Cf/Cu composite was prepared by vacuum melting infiltration. Ti and Cr were doped to the Cu alloy to improve the wettability between Cu and carbon. The microstrueture was investigated by XRD, SEM and EDS. The arc eros...Cf/Cu composite was prepared by vacuum melting infiltration. Ti and Cr were doped to the Cu alloy to improve the wettability between Cu and carbon. The microstrueture was investigated by XRD, SEM and EDS. The arc erosion rate of Cf/Cu composite was investigated in vacuum. The results showed that the Ti and Cr could improve the wettability between Cu and C/C preform and the infiltration ability of Cu into C/ C preform greatly. A TiC interface formed between the fibers and matrix. The good bonding between the fiber and matrix guaranteed that part of the Cu matrix can still be bonded on the fibers even when the material was exposed to the plasma. Consequently, the carbon fibers were protected from the erosion. In comparison, Cu was completely consumed by the arc erosion. Hence, the graphite was eroded and presented a cauliflower-like morphology. Therefore, the prepared C/Cu bad better ability to resist the arc erosion, compared with common Cu-C material.展开更多
A 2D axisymmetric numerical model was established to investigate the variations of molten pool with different melt rates during the vacuum arc remelting of 8Cr4Mo4V high-strength steel,and the ingot growth was simulat...A 2D axisymmetric numerical model was established to investigate the variations of molten pool with different melt rates during the vacuum arc remelting of 8Cr4Mo4V high-strength steel,and the ingot growth was simulated by dynamic mesh techniques.The results show that as the ingot grows,the molten pool profile changes from shallow and flat to V-shaped,and both the molten pool depth and the mushy width increase.Meanwhile,the variation of both the molten pool shape and the mushy width melt rate is clarified by the thermal equilibrium analysis.As melt rate increases,both the molten pool depth and the mushy width increase.It is caused by the increment in sensible heat stored in the ingot due to the limitation of the cooling capacity of the mold.The nonlinear increment in sensible heat leads to a nonlinear increase in the mushy width.In addition,as melt rate increases,the local solidification time(LST)of ingot decreases obviously at first and then increases.When melt rate is controlled in a suitable range,LST is the lowest and the secondary dendrite arm spacing of the ingot is the smallest,which can effectively improve the compactness degree of 8Cr4Mo4V high-strength steel.展开更多
This paper summarizes melting methods of titanium and titanium alloy, such as vacuum arc melting(VAR) and electron beam cold hearth melting(EBCHM), and the related inclusions formed when using these melting methods. L...This paper summarizes melting methods of titanium and titanium alloy, such as vacuum arc melting(VAR) and electron beam cold hearth melting(EBCHM), and the related inclusions formed when using these melting methods. Low-density inclusions are resulted from contamination of air, and high-density inclusions are caused by refractory elements. The formation process of inclusions was analysed. The removal mechanism of different kinds of inclusions was specified. Low-density inclusions are removed mainly by resolving. This is a comprehensive process containing reaction diffusion. The resolving rate of high-density inclusions is so low that these inclusions are mainly removed by sedimentation. The experiments and physical models of inclusions are detailed. In various melting methods, vacuum arc melting is prominent. However, this method cannot remove inclusions effectively, which usually results in repeat melting. Electron beam cold hearth melting has the best ability of removing inclusions. These results can provide instructions to researchers of titanium and titanium alloys.展开更多
The effects of vacuum induction melting(VIM) and vacuum arc remelting(VAR) processes on the microstructure and stress rupture properties of Ni-based GTD-111 superalloy were investigated. Samples of GTD-111 master allo...The effects of vacuum induction melting(VIM) and vacuum arc remelting(VAR) processes on the microstructure and stress rupture properties of Ni-based GTD-111 superalloy were investigated. Samples of GTD-111 master alloy were melted in VIM and VAR furnaces and then poured into a preheated ceramic mold for VIM melt or into a water-cooled copper mold for VAR melt. The as-cast samples were examined radiographically to ensure that no casting defects were present in the final castings; the samples were then heat-treated using a standard heat-treatment cycle. The microstructure of the samples was investigated using optical microscopy and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy for microanalysis. On the basis of standard ASTM-E139, stress rupture tests were carried out at 1000°C under a stress of 300 MPa. The results showed that a γ matrix, fine γ′ precipitates, a γ–γ′ eutectic structure, carbide particles, and some harmful phases such as σ and η phases were present in the as-cast samples. The γ′ precipitates with cubic morphology appeared in the matrix after the standard heat-treatment process. The extent of segregation and the amount of γ–γ′ eutectic structure formed in the VAR-prepared sample were less than in the VIM-prepared sample. The results of stress rupture tests showed that the rupture time for the VAR sample was 43% longer than that for the VIM sample.展开更多
对比分析一次电子束冷床炉熔炼(EBCHM)加一次真空自耗电弧炉熔炼(VAR)和三次真空自耗电弧炉熔炼生产的φ820 mm TC17钛合金铸锭的化学成分均匀性,以及由这两种铸锭经相同工艺锻造得到的棒材的组织均匀性。结果表明,通过原材料控制和工...对比分析一次电子束冷床炉熔炼(EBCHM)加一次真空自耗电弧炉熔炼(VAR)和三次真空自耗电弧炉熔炼生产的φ820 mm TC17钛合金铸锭的化学成分均匀性,以及由这两种铸锭经相同工艺锻造得到的棒材的组织均匀性。结果表明,通过原材料控制和工艺参数设计,两种熔炼方式均可生产出化学成分均匀、杂质含量可控的大规格TC17钛合金铸锭,且EBCHM+VAR工艺在残钛回收方面具有优势;两种工艺得到的铸锭,经相同的锻造工艺可获得组织均匀的棒材,为航空转动件提供材料支撑。展开更多
基金Funded by the National Natural Science Foundation of China(No.51002121)Postgraduate Technology Innovation Project of Taiyuan University of Science and Technology(No.20134008)
文摘Cf/Cu composite was prepared by vacuum melting infiltration. Ti and Cr were doped to the Cu alloy to improve the wettability between Cu and carbon. The microstrueture was investigated by XRD, SEM and EDS. The arc erosion rate of Cf/Cu composite was investigated in vacuum. The results showed that the Ti and Cr could improve the wettability between Cu and C/C preform and the infiltration ability of Cu into C/ C preform greatly. A TiC interface formed between the fibers and matrix. The good bonding between the fiber and matrix guaranteed that part of the Cu matrix can still be bonded on the fibers even when the material was exposed to the plasma. Consequently, the carbon fibers were protected from the erosion. In comparison, Cu was completely consumed by the arc erosion. Hence, the graphite was eroded and presented a cauliflower-like morphology. Therefore, the prepared C/Cu bad better ability to resist the arc erosion, compared with common Cu-C material.
基金financially supported by National Natural Science Foundation of China(Nos.U1908223 and U1960203)Fundamental Research Funds for the Central Universities(Grant No.N2125017)Talent Project of Revitalizing Liaoning(Grant No.XLYC1902046).
文摘A 2D axisymmetric numerical model was established to investigate the variations of molten pool with different melt rates during the vacuum arc remelting of 8Cr4Mo4V high-strength steel,and the ingot growth was simulated by dynamic mesh techniques.The results show that as the ingot grows,the molten pool profile changes from shallow and flat to V-shaped,and both the molten pool depth and the mushy width increase.Meanwhile,the variation of both the molten pool shape and the mushy width melt rate is clarified by the thermal equilibrium analysis.As melt rate increases,both the molten pool depth and the mushy width increase.It is caused by the increment in sensible heat stored in the ingot due to the limitation of the cooling capacity of the mold.The nonlinear increment in sensible heat leads to a nonlinear increase in the mushy width.In addition,as melt rate increases,the local solidification time(LST)of ingot decreases obviously at first and then increases.When melt rate is controlled in a suitable range,LST is the lowest and the secondary dendrite arm spacing of the ingot is the smallest,which can effectively improve the compactness degree of 8Cr4Mo4V high-strength steel.
基金financially supported by the National Key Research and Development Program of China(2016YFB0301200)
文摘This paper summarizes melting methods of titanium and titanium alloy, such as vacuum arc melting(VAR) and electron beam cold hearth melting(EBCHM), and the related inclusions formed when using these melting methods. Low-density inclusions are resulted from contamination of air, and high-density inclusions are caused by refractory elements. The formation process of inclusions was analysed. The removal mechanism of different kinds of inclusions was specified. Low-density inclusions are removed mainly by resolving. This is a comprehensive process containing reaction diffusion. The resolving rate of high-density inclusions is so low that these inclusions are mainly removed by sedimentation. The experiments and physical models of inclusions are detailed. In various melting methods, vacuum arc melting is prominent. However, this method cannot remove inclusions effectively, which usually results in repeat melting. Electron beam cold hearth melting has the best ability of removing inclusions. These results can provide instructions to researchers of titanium and titanium alloys.
文摘The effects of vacuum induction melting(VIM) and vacuum arc remelting(VAR) processes on the microstructure and stress rupture properties of Ni-based GTD-111 superalloy were investigated. Samples of GTD-111 master alloy were melted in VIM and VAR furnaces and then poured into a preheated ceramic mold for VIM melt or into a water-cooled copper mold for VAR melt. The as-cast samples were examined radiographically to ensure that no casting defects were present in the final castings; the samples were then heat-treated using a standard heat-treatment cycle. The microstructure of the samples was investigated using optical microscopy and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy for microanalysis. On the basis of standard ASTM-E139, stress rupture tests were carried out at 1000°C under a stress of 300 MPa. The results showed that a γ matrix, fine γ′ precipitates, a γ–γ′ eutectic structure, carbide particles, and some harmful phases such as σ and η phases were present in the as-cast samples. The γ′ precipitates with cubic morphology appeared in the matrix after the standard heat-treatment process. The extent of segregation and the amount of γ–γ′ eutectic structure formed in the VAR-prepared sample were less than in the VIM-prepared sample. The results of stress rupture tests showed that the rupture time for the VAR sample was 43% longer than that for the VIM sample.
文摘对比分析一次电子束冷床炉熔炼(EBCHM)加一次真空自耗电弧炉熔炼(VAR)和三次真空自耗电弧炉熔炼生产的φ820 mm TC17钛合金铸锭的化学成分均匀性,以及由这两种铸锭经相同工艺锻造得到的棒材的组织均匀性。结果表明,通过原材料控制和工艺参数设计,两种熔炼方式均可生产出化学成分均匀、杂质含量可控的大规格TC17钛合金铸锭,且EBCHM+VAR工艺在残钛回收方面具有优势;两种工艺得到的铸锭,经相同的锻造工艺可获得组织均匀的棒材,为航空转动件提供材料支撑。