The linkage of aromatic ring structures in vacuum residues was important for the refining process. The Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS) combined with collision-induced dissociatio...The linkage of aromatic ring structures in vacuum residues was important for the refining process. The Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS) combined with collision-induced dissociation(CID) is a powerful method to characterize the molecular structure of petroleum fractions. In this work, model compounds with different aromatic ring structures were measured by CID FT-ICR MS. The cracking of the parent ions and the generated fragment ions were able to distinguish different linkage of the model compounds. Then, vacuum residues were separated into saturates, aromatics, resins and asphaltenes fractions(SARA), and each fraction was characterized by CID technology. According to the experimental results, the aromatic rings in saturates and aromatics fractions were mainly of the island-type structures, while the aromatic rings in resins and asphaltenes fractions had a significant amount of archipelago-type structures.展开更多
Understanding the coking behaviors has been considered to be really essential for developing better vacuum residue processing technologies.A battery of thermal cracking tests of typical vacuum residue at 410℃ with va...Understanding the coking behaviors has been considered to be really essential for developing better vacuum residue processing technologies.A battery of thermal cracking tests of typical vacuum residue at 410℃ with various reaction time were performed to evaluate the coke formation process.The total yields of ideal components including naphtha,atmospheric gas oil(AGO)and vacuum gas oil(VGO)of thermal cracking reactions increased from 10.89%to 40.81%,and the conversion ratios increased from8.05%to 43.33%with increasing the reaction time from 10 to 70 min.The asphaltene content increased from 12.14%to a maximum of 22.39%and then decreased,and this maximum of asphaltene content occurred at the end of the coking induction period.The asphaltenes during the coking induction period,at the end and after coking induction period of those tested thermal cracking reactions were characterized to disclose the structure changing rules for coke formation process,and the coke formation pathways were discussed to reveal the coke formation process at molecular level.展开更多
To deeply understand the effects of support properties on the performance of Mo-based slurry-phase hydrocracking catalysts,four Mo-based catalysts supported on amorphous silica alumina(ASA),γ-Al_(2)O_(3),ultra-stable...To deeply understand the effects of support properties on the performance of Mo-based slurry-phase hydrocracking catalysts,four Mo-based catalysts supported on amorphous silica alumina(ASA),γ-Al_(2)O_(3),ultra-stable Y(USY)zeolite and SiO_(2) were prepared by the incipient wetness impregnation method,respectively,and their catalytic performances were compared in the vacuum residue(VR)hydrocracking process.It is found that the Mo/ASA catalyst exhibits the highest VR conversion among the different catalysts,indicating that both the appropriate amount of acid sites,especially B acid sites and larger mesoporous volume of ASA can enhance the VR hydrocracking into light distillates.Furthermore,Mo catalysts supported on the different supports show quite different product distributions in VR hydrocracking.The Mo/ASA catalyst provides higher yields of naphtha and middle distillates and lower yields of gas and coke compared with other catalysts,it is attributed to the highest MoS_(2) slab dispersion,the highest sulfuration degree of Mo species,and the most Mo atoms located at the edge sites for the Mo/ASA catalyst,as observed by HRTEM and XPS analyses.These features of Mo/ASA are beneficial for the hydrogenation of intermediate products and polycyclic aromatic hydrocarbons to restrict the gas and coke formation.展开更多
Many specifications of paving asphalts are closely related to their colloidal stability, which is, however, determined by their exact chemical compositions. The Yumen vacuum residue (YVR), the bottoms of a paraffinic...Many specifications of paving asphalts are closely related to their colloidal stability, which is, however, determined by their exact chemical compositions. The Yumen vacuum residue (YVR), the bottoms of a paraffinic crude oil is unfit for the production of highway paving asphalts directly, Neither are the de-oiled asphalts of the YVR. In this research a blending method and an optimal process of solvent de-asphalts are adopted to investigate the feasibility of formulating highway-paving asphalts from YVR. Results show that highway paving asphalts are formulated by blending solvent de-oiled asphalts with one or more of the materials including YVR, decanted oil from FCC process, and furfural extracts from lubricating base stocks. Further investigations indicate that adding oil decanted from FCC process to the solvent de-asphalting process can increase the de-asphalted oil production, improve the de-oiled asphalts quality, and thus optimize the refinery processes. The methodology of this research can be extended even to refineries processing non-paraffinic crude oils.展开更多
The vacuum residual from Iranian Light crude oil are separated into a series of 16 narrow fractions according to the molecular weight by the supercritical fluid extraction and fractional (SFEF) technology. The chemica...The vacuum residual from Iranian Light crude oil are separated into a series of 16 narrow fractions according to the molecular weight by the supercritical fluid extraction and fractional (SFEF) technology. The chemical element and the UV spectrum of each fraction are analyzed. The effects of several factors on the interfacial tension are investigated, which are the fraction concentration in oil phase, the ratio of oil component, the salts dissolved in the water phase and the pH value. The interfacial tension decreases rapidly as the concentration of the residual fraction in the oil increases, showing a higher interfacial activity of the fraction. The interfacial tension changes, as the amount of absorption or the state of the fractions in the interface changes resulting from different ratios of oil, different kinds or concentrations of salts in water, and different pH values. It is concluded that the interfacial tension changes regularly, corresponding to the regular molecular parameters of the vacuum residual fractions.展开更多
The present study examined the effects of ultrasonic radiation on the properties, structural parameters and fluidized catalytic cracking(FCC) performance of vacuum residue. We found that ultrasonic radiation markedly ...The present study examined the effects of ultrasonic radiation on the properties, structural parameters and fluidized catalytic cracking(FCC) performance of vacuum residue. We found that ultrasonic radiation markedly decreased the viscosity, carbon residue and average molecular weight, but slightly affected the density of vacuum residue. Besides, chromatographic analyses of SARA fractions revealed that asphaltene, resin and aromatic components were reduced, while saturates increased after ultrasonic radiation. Furthermore, FT-IR, ~1H-NMR, elemental analysis and VPO analysis indicated that the structural unit number(n), unit structure weights(usw), carbon fraction in aromatic structure(fA), naphthenic structure(fN) and naphthenic rings(RN) were decreased while the carbon fraction in paraffinic structures(fP) was increased. FCC showed an increased conversion rate(by 2.7%) and gasoline yield(by 3.7%). In sum, the ultrasonic radiation may facilitate and improve the secondary processing of vacuum residue.展开更多
In this work,a molecular-level kinetic model was built to simulate the vacuum residue(VR)coking process in a semi-batch laboratory-scale reaction kettle.A series of reaction rules for heavy oil coking were summarized ...In this work,a molecular-level kinetic model was built to simulate the vacuum residue(VR)coking process in a semi-batch laboratory-scale reaction kettle.A series of reaction rules for heavy oil coking were summarized and formulated based on the free radical reaction mechanism.Then,a large-scale molecularlevel reaction network was automatically generated by applying the reaction rules on the vacuum residue molecules.In order to accurately describe the physical change of each molecule in the reactor,we coupled the molecular-level kinetic model with a vapor–liquid phase separation model.The vapor–liquid phase separation model adopted the Peng-Robinson equation of state to calculate vapor–liquid equilibrium.A separation efficiency coefficient was introduced to represent the mass transfer during the phase separation.We used six sets of experimental data under various reaction conditions to regress the model parameters.The tuned model showed that there was an excellent agreement between the calculated values and experimental data.Moreover,we investigated the effect of reaction temperature and reaction time on the product yields.After a comprehensive evaluation of the reaction temperature and reaction time,the optimal reaction condition for the vacuum residue coking was also obtained.展开更多
In order to develop high-efficiency and low-cost catalyst for the slurry-phase hydrocracking of vacuum residue(VR),the catalyst supported on natural rectorite was prepared,and the effect of calcination modification of...In order to develop high-efficiency and low-cost catalyst for the slurry-phase hydrocracking of vacuum residue(VR),the catalyst supported on natural rectorite was prepared,and the effect of calcination modification of rectorite on the catalyst properties and performance was investigated.The support of rectorite and catalyst were characterized by XRD,FTIR,Py-FTIR,H_(2)-TPR and XPS to examine their structures and properties.The comparative reaction results show that VR conversions for the catalysts supported on calcined rectorite were similar with that on raw rectorite,possibly due to the VR cracking reaction controlled by the thermal cracking following free radical mechanism because of few acid sites observed on the catalysts surface.However,the yields of naphtha and middle distillates for the various catalysts were obviously different,and increased following as Rec-Mo(40.4 wt%)展开更多
Thermal upgrading of vacuum residue mixed with waste plastics was studied in a laboratory scale delayed coking unit.The model of feed thermal decomposition was set up and the first order reaction kinetics was used to ...Thermal upgrading of vacuum residue mixed with waste plastics was studied in a laboratory scale delayed coking unit.The model of feed thermal decomposition was set up and the first order reaction kinetics was used to predict products distribution during the coking process.The distillate yield was higher(70%) for the vacuum residue/polystyrene(VR/PS) feed system and the vacuum residue/low density polyethylene(VR/LDPE) feed system.The resulted distillate yield was separated into fractions according to their boiling points,with gasoline and diesel being our fractions of concern.The activation energy was higher for gasoline production(around 60 kcal/mol) varying with the type of feed system,while it was 33 kcal/mol for diesel fraction.The regression coefficient R was 0.990.展开更多
Hydrotreating of vacuum residue by ebullated-bed shows tremendous significance due to more stringent environmental regulations and growing demand for lighter fuels. However, enhancing the catalyst stability still rema...Hydrotreating of vacuum residue by ebullated-bed shows tremendous significance due to more stringent environmental regulations and growing demand for lighter fuels. However, enhancing the catalyst stability still remains as a challenging task. Herein, two Ni–Mo/Al_(2)O_(3) catalysts with distinct morphologies(i.e., spherical and cylindrical) were first designed, and the morphology effect on deactivation was systematically elucidated employing multi-characterizations, such as HRTEM with EDX mapping, electron microprobe analysis, FT-IR, TGA and Raman. It is found that spherical catalyst exhibits superior hydrotreating stability over 1600 h. The carbonaceous deposits on spherical catalyst with less graphite structure are lighter, and the coke weight is also smaller. In addition, the metal deposits uniformly distribute in the spherical catalyst, which is better than the concentrated distribution near the pore mouth for the cylindrical catalyst. Furthermore, the intrinsic reason for the differences was analyzed by the bed expansion experiment. Higher bed expansion rate together with the better mass transfer ability leads to the enhanced performance. This work sheds new light on the design of more efficient industrial hydrotreating catalyst based on morphology effect.展开更多
In order to improve the thermal stability of condensed polynuclear aromatic(COPNA) resin synthesized from vacuum residue, 1,4-benzenedimethanol was added to cure COPNA resin. The curing mechanism was investigated by p...In order to improve the thermal stability of condensed polynuclear aromatic(COPNA) resin synthesized from vacuum residue, 1,4-benzenedimethanol was added to cure COPNA resin. The curing mechanism was investigated by proton nuclear magnetic resonance spectrometry, solid carbon-13 nuclear magnetic resonance spectrometry and Fourier transform infrared spectroscopy. Microstructures of the uncured and the cured COPNA resins were studied by scanning electron microscopy and X-ray diffractometry. The thermal stability of COPNA resins before and after curing was tested by thermogravimetric analysis. The element composition of the cured COPNA resin heated at different temperatures was analyzed by an element analyzer. The results showed that the uncured COPNA resin reacted with the cross-linking agent during the curing process, and the curing mechanism was confirmed to be the electrophilic substitution reaction. Compared with the uncured COPNA resin, the cured COPNA resin had a smooth surface, well-ordered and streamlined sheet structure with more crystalline solids, better molecular arrangement and orientation. The weight loss process of the uncured and cured COPNA resins was divided into three stages. Carbon residue of the cured COPNA resin was 41.65% at 600 ℃, which was much higher than 25.02% of the uncured COPNA resin, which indicated that the cured COPNA resin had higher thermal stability.展开更多
In this study, the heteroatom classes and molecular structures of nitrogen compounds in vacuum residue arecharacterized by the electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectromet...In this study, the heteroatom classes and molecular structures of nitrogen compounds in vacuum residue arecharacterized by the electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) combined with the Fourier transform infrared (FT-IR) spectroscopy. The results demonstrate that three basic nitrogencompounds, N1 (in which a molecule contains one nitrogen atom, similarly hereinafter), N1O1 and N2, are identified bytheir positive-ion mass spectra, and three non-basic nitrogen compounds, N1, N1O1, and N1S1, are characterized by theirnegative-ion mass spectra. Among these nitrogen compounds, the N1 class species are the most predominant. Combinedwith the data of ESI FT-ICR MS and FT-IR, the basic N1 class species are likely alkyl quinolines, naphthenic quinolines,acridines, benzonacridines, while the abundant non-basic N1 class species are derivatives of benzocarbazole. In comparisonwith CGO, the N1 basic nitrogen compounds in VR exhibit a higher average degree of condensation and have much longeralkyl side chains.展开更多
Upgrading of vacuum residue is of prime industrial significance due to the increasing demand for light oils.Elucidating the effect of catalyst morphology on vacuum residue hydrotreating performance by kinetic modeling...Upgrading of vacuum residue is of prime industrial significance due to the increasing demand for light oils.Elucidating the effect of catalyst morphology on vacuum residue hydrotreating performance by kinetic modeling is therefore of great importance.Herein,kinetic analysis of hydrodemetallization(HDM)and hydrodeconradsoncarbon-residue(HDCCR)performances on industrial Ni-Mo/Al_(2)O_(3)catalysts with spherical and cylindrical morphologies in ebullated-bed were evaluated for more than 1600 h.It was found that the percentage of light impurities easier to be removed on spherical catalysts were 78.20%and 39.43%in HDM and HDCCR reactions,respectively,higher than 65.20%and 17.50%on cylindrical catalysts.This suggests that catalyst morphology affects the impurity removal ability and the impurity properties,resulting in better hydrotreating performance of spherical catalysts.This work not only combines catalyst morphology with impurity removal capability through kinetic modeling,but also provides new insights into the design of efficient hydrotreating catalysts.展开更多
A methodology for kinetic modeling of conversion processes is presented.The proposed approach allows to overcome the lack of molecular detail of the petroleum fractions and to simulate the reactions of the process by ...A methodology for kinetic modeling of conversion processes is presented.The proposed approach allows to overcome the lack of molecular detail of the petroleum fractions and to simulate the reactions of the process by means of a two-step procedure.In the first step,a synthetic mixture of molecules representing the feedstock is generated via a molecular reconstruction method,termed SR-REM molecular reconstruction.In the second step,a kinetic Monte Carlo method,termed stochastic simulation algorithm(SSA),is used to simulate the effect of the conversion reactions on the mixture of molecules.The resulting methodology is applied to the Athabasca vacuum residue hydrocracking.An adequate molecular representation of the vacuum residue is obtained using the SR-REM algorithm.The reaction simulations present a good agreement with the laboratory data for Athabasca vacuum residue conversion.In addition,the proposed methodology provides the molecular detail of the vacuum residue conversion throughout the reactions simulations.展开更多
基金supported by the Major State Basic Research Development Program of China (973 Program, No. 2012CB224801)
文摘The linkage of aromatic ring structures in vacuum residues was important for the refining process. The Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS) combined with collision-induced dissociation(CID) is a powerful method to characterize the molecular structure of petroleum fractions. In this work, model compounds with different aromatic ring structures were measured by CID FT-ICR MS. The cracking of the parent ions and the generated fragment ions were able to distinguish different linkage of the model compounds. Then, vacuum residues were separated into saturates, aromatics, resins and asphaltenes fractions(SARA), and each fraction was characterized by CID technology. According to the experimental results, the aromatic rings in saturates and aromatics fractions were mainly of the island-type structures, while the aromatic rings in resins and asphaltenes fractions had a significant amount of archipelago-type structures.
文摘Understanding the coking behaviors has been considered to be really essential for developing better vacuum residue processing technologies.A battery of thermal cracking tests of typical vacuum residue at 410℃ with various reaction time were performed to evaluate the coke formation process.The total yields of ideal components including naphtha,atmospheric gas oil(AGO)and vacuum gas oil(VGO)of thermal cracking reactions increased from 10.89%to 40.81%,and the conversion ratios increased from8.05%to 43.33%with increasing the reaction time from 10 to 70 min.The asphaltene content increased from 12.14%to a maximum of 22.39%and then decreased,and this maximum of asphaltene content occurred at the end of the coking induction period.The asphaltenes during the coking induction period,at the end and after coking induction period of those tested thermal cracking reactions were characterized to disclose the structure changing rules for coke formation process,and the coke formation pathways were discussed to reveal the coke formation process at molecular level.
基金The authors acknowledge National Key Research and Development Program of China(2018YFA0209403)National Natural Science Foundation of China(21908027)Qingyuan Innovation Laboratory Program(00121002)for financing this research.
文摘To deeply understand the effects of support properties on the performance of Mo-based slurry-phase hydrocracking catalysts,four Mo-based catalysts supported on amorphous silica alumina(ASA),γ-Al_(2)O_(3),ultra-stable Y(USY)zeolite and SiO_(2) were prepared by the incipient wetness impregnation method,respectively,and their catalytic performances were compared in the vacuum residue(VR)hydrocracking process.It is found that the Mo/ASA catalyst exhibits the highest VR conversion among the different catalysts,indicating that both the appropriate amount of acid sites,especially B acid sites and larger mesoporous volume of ASA can enhance the VR hydrocracking into light distillates.Furthermore,Mo catalysts supported on the different supports show quite different product distributions in VR hydrocracking.The Mo/ASA catalyst provides higher yields of naphtha and middle distillates and lower yields of gas and coke compared with other catalysts,it is attributed to the highest MoS_(2) slab dispersion,the highest sulfuration degree of Mo species,and the most Mo atoms located at the edge sites for the Mo/ASA catalyst,as observed by HRTEM and XPS analyses.These features of Mo/ASA are beneficial for the hydrogenation of intermediate products and polycyclic aromatic hydrocarbons to restrict the gas and coke formation.
文摘Many specifications of paving asphalts are closely related to their colloidal stability, which is, however, determined by their exact chemical compositions. The Yumen vacuum residue (YVR), the bottoms of a paraffinic crude oil is unfit for the production of highway paving asphalts directly, Neither are the de-oiled asphalts of the YVR. In this research a blending method and an optimal process of solvent de-asphalts are adopted to investigate the feasibility of formulating highway-paving asphalts from YVR. Results show that highway paving asphalts are formulated by blending solvent de-oiled asphalts with one or more of the materials including YVR, decanted oil from FCC process, and furfural extracts from lubricating base stocks. Further investigations indicate that adding oil decanted from FCC process to the solvent de-asphalting process can increase the de-asphalted oil production, improve the de-oiled asphalts quality, and thus optimize the refinery processes. The methodology of this research can be extended even to refineries processing non-paraffinic crude oils.
基金Supported by the National Key Basic Research Programme (No.973-G1999022505),University of Petroleum Basic Research Fund(No.ZX9904)
文摘The vacuum residual from Iranian Light crude oil are separated into a series of 16 narrow fractions according to the molecular weight by the supercritical fluid extraction and fractional (SFEF) technology. The chemical element and the UV spectrum of each fraction are analyzed. The effects of several factors on the interfacial tension are investigated, which are the fraction concentration in oil phase, the ratio of oil component, the salts dissolved in the water phase and the pH value. The interfacial tension decreases rapidly as the concentration of the residual fraction in the oil increases, showing a higher interfacial activity of the fraction. The interfacial tension changes, as the amount of absorption or the state of the fractions in the interface changes resulting from different ratios of oil, different kinds or concentrations of salts in water, and different pH values. It is concluded that the interfacial tension changes regularly, corresponding to the regular molecular parameters of the vacuum residual fractions.
文摘The present study examined the effects of ultrasonic radiation on the properties, structural parameters and fluidized catalytic cracking(FCC) performance of vacuum residue. We found that ultrasonic radiation markedly decreased the viscosity, carbon residue and average molecular weight, but slightly affected the density of vacuum residue. Besides, chromatographic analyses of SARA fractions revealed that asphaltene, resin and aromatic components were reduced, while saturates increased after ultrasonic radiation. Furthermore, FT-IR, ~1H-NMR, elemental analysis and VPO analysis indicated that the structural unit number(n), unit structure weights(usw), carbon fraction in aromatic structure(fA), naphthenic structure(fN) and naphthenic rings(RN) were decreased while the carbon fraction in paraffinic structures(fP) was increased. FCC showed an increased conversion rate(by 2.7%) and gasoline yield(by 3.7%). In sum, the ultrasonic radiation may facilitate and improve the secondary processing of vacuum residue.
基金supported by the National Natural Science Foun-dation of China(22021004 and U19B2002).
文摘In this work,a molecular-level kinetic model was built to simulate the vacuum residue(VR)coking process in a semi-batch laboratory-scale reaction kettle.A series of reaction rules for heavy oil coking were summarized and formulated based on the free radical reaction mechanism.Then,a large-scale molecularlevel reaction network was automatically generated by applying the reaction rules on the vacuum residue molecules.In order to accurately describe the physical change of each molecule in the reactor,we coupled the molecular-level kinetic model with a vapor–liquid phase separation model.The vapor–liquid phase separation model adopted the Peng-Robinson equation of state to calculate vapor–liquid equilibrium.A separation efficiency coefficient was introduced to represent the mass transfer during the phase separation.We used six sets of experimental data under various reaction conditions to regress the model parameters.The tuned model showed that there was an excellent agreement between the calculated values and experimental data.Moreover,we investigated the effect of reaction temperature and reaction time on the product yields.After a comprehensive evaluation of the reaction temperature and reaction time,the optimal reaction condition for the vacuum residue coking was also obtained.
基金National Key Research and Development program(2018YFA0209403)National Natural Science Foundation of China(Youth)program(21908027)for financing this research。
文摘In order to develop high-efficiency and low-cost catalyst for the slurry-phase hydrocracking of vacuum residue(VR),the catalyst supported on natural rectorite was prepared,and the effect of calcination modification of rectorite on the catalyst properties and performance was investigated.The support of rectorite and catalyst were characterized by XRD,FTIR,Py-FTIR,H_(2)-TPR and XPS to examine their structures and properties.The comparative reaction results show that VR conversions for the catalysts supported on calcined rectorite were similar with that on raw rectorite,possibly due to the VR cracking reaction controlled by the thermal cracking following free radical mechanism because of few acid sites observed on the catalysts surface.However,the yields of naphtha and middle distillates for the various catalysts were obviously different,and increased following as Rec-Mo(40.4 wt%)
文摘Thermal upgrading of vacuum residue mixed with waste plastics was studied in a laboratory scale delayed coking unit.The model of feed thermal decomposition was set up and the first order reaction kinetics was used to predict products distribution during the coking process.The distillate yield was higher(70%) for the vacuum residue/polystyrene(VR/PS) feed system and the vacuum residue/low density polyethylene(VR/LDPE) feed system.The resulted distillate yield was separated into fractions according to their boiling points,with gasoline and diesel being our fractions of concern.The activation energy was higher for gasoline production(around 60 kcal/mol) varying with the type of feed system,while it was 33 kcal/mol for diesel fraction.The regression coefficient R was 0.990.
基金supported by Natural Science Foundation of China(21978325)the National Key Technologies Research and Development Program of China(2017YFB0306503)+5 种基金Fundamental Research Funds for the Central Universities(18CX02130A,18CX02014A)Open Project of State Key Laboratory of Chemical Engineering(SKL-Ch E-18C04)Doctoral Start-up Foundation of Liaoning Province(2019-BS054)Program for Liaoning Innovative Talents in University(XLYC1807245)China Postdoctoral Science Foundation(2019M661409)High-level Talent Innovation and Business Project of Dalian(2017RQ085)。
文摘Hydrotreating of vacuum residue by ebullated-bed shows tremendous significance due to more stringent environmental regulations and growing demand for lighter fuels. However, enhancing the catalyst stability still remains as a challenging task. Herein, two Ni–Mo/Al_(2)O_(3) catalysts with distinct morphologies(i.e., spherical and cylindrical) were first designed, and the morphology effect on deactivation was systematically elucidated employing multi-characterizations, such as HRTEM with EDX mapping, electron microprobe analysis, FT-IR, TGA and Raman. It is found that spherical catalyst exhibits superior hydrotreating stability over 1600 h. The carbonaceous deposits on spherical catalyst with less graphite structure are lighter, and the coke weight is also smaller. In addition, the metal deposits uniformly distribute in the spherical catalyst, which is better than the concentrated distribution near the pore mouth for the cylindrical catalyst. Furthermore, the intrinsic reason for the differences was analyzed by the bed expansion experiment. Higher bed expansion rate together with the better mass transfer ability leads to the enhanced performance. This work sheds new light on the design of more efficient industrial hydrotreating catalyst based on morphology effect.
基金supported by the National Natural Science Foundation of China(51172285 and 51372277)the Fundamental Research Funds for the Central Universities(14CX02060A,15CX02084A)the Natural Science Foundation of Shandong Province(ZR2011EL030)
文摘In order to improve the thermal stability of condensed polynuclear aromatic(COPNA) resin synthesized from vacuum residue, 1,4-benzenedimethanol was added to cure COPNA resin. The curing mechanism was investigated by proton nuclear magnetic resonance spectrometry, solid carbon-13 nuclear magnetic resonance spectrometry and Fourier transform infrared spectroscopy. Microstructures of the uncured and the cured COPNA resins were studied by scanning electron microscopy and X-ray diffractometry. The thermal stability of COPNA resins before and after curing was tested by thermogravimetric analysis. The element composition of the cured COPNA resin heated at different temperatures was analyzed by an element analyzer. The results showed that the uncured COPNA resin reacted with the cross-linking agent during the curing process, and the curing mechanism was confirmed to be the electrophilic substitution reaction. Compared with the uncured COPNA resin, the cured COPNA resin had a smooth surface, well-ordered and streamlined sheet structure with more crystalline solids, better molecular arrangement and orientation. The weight loss process of the uncured and cured COPNA resins was divided into three stages. Carbon residue of the cured COPNA resin was 41.65% at 600 ℃, which was much higher than 25.02% of the uncured COPNA resin, which indicated that the cured COPNA resin had higher thermal stability.
文摘In this study, the heteroatom classes and molecular structures of nitrogen compounds in vacuum residue arecharacterized by the electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) combined with the Fourier transform infrared (FT-IR) spectroscopy. The results demonstrate that three basic nitrogencompounds, N1 (in which a molecule contains one nitrogen atom, similarly hereinafter), N1O1 and N2, are identified bytheir positive-ion mass spectra, and three non-basic nitrogen compounds, N1, N1O1, and N1S1, are characterized by theirnegative-ion mass spectra. Among these nitrogen compounds, the N1 class species are the most predominant. Combinedwith the data of ESI FT-ICR MS and FT-IR, the basic N1 class species are likely alkyl quinolines, naphthenic quinolines,acridines, benzonacridines, while the abundant non-basic N1 class species are derivatives of benzocarbazole. In comparisonwith CGO, the N1 basic nitrogen compounds in VR exhibit a higher average degree of condensation and have much longeralkyl side chains.
基金supported by the National Natural Science Foundation of China(21978325)the Independent Innovation Research Projects(20CX06072A,20CX06095A,and 20CX06096A)+1 种基金the Natural Science Foundation of Shandong Province(ZR2020YQ17,and ZR2020KB006)the National Science Foundation for Distinguished Young Scholars(22122807)
文摘Upgrading of vacuum residue is of prime industrial significance due to the increasing demand for light oils.Elucidating the effect of catalyst morphology on vacuum residue hydrotreating performance by kinetic modeling is therefore of great importance.Herein,kinetic analysis of hydrodemetallization(HDM)and hydrodeconradsoncarbon-residue(HDCCR)performances on industrial Ni-Mo/Al_(2)O_(3)catalysts with spherical and cylindrical morphologies in ebullated-bed were evaluated for more than 1600 h.It was found that the percentage of light impurities easier to be removed on spherical catalysts were 78.20%and 39.43%in HDM and HDCCR reactions,respectively,higher than 65.20%and 17.50%on cylindrical catalysts.This suggests that catalyst morphology affects the impurity removal ability and the impurity properties,resulting in better hydrotreating performance of spherical catalysts.This work not only combines catalyst morphology with impurity removal capability through kinetic modeling,but also provides new insights into the design of efficient hydrotreating catalysts.
文摘A methodology for kinetic modeling of conversion processes is presented.The proposed approach allows to overcome the lack of molecular detail of the petroleum fractions and to simulate the reactions of the process by means of a two-step procedure.In the first step,a synthetic mixture of molecules representing the feedstock is generated via a molecular reconstruction method,termed SR-REM molecular reconstruction.In the second step,a kinetic Monte Carlo method,termed stochastic simulation algorithm(SSA),is used to simulate the effect of the conversion reactions on the mixture of molecules.The resulting methodology is applied to the Athabasca vacuum residue hydrocracking.An adequate molecular representation of the vacuum residue is obtained using the SR-REM algorithm.The reaction simulations present a good agreement with the laboratory data for Athabasca vacuum residue conversion.In addition,the proposed methodology provides the molecular detail of the vacuum residue conversion throughout the reactions simulations.