SnS/CdS heterojunction is a promising system for photovoltaic application. SnS thin films were thermally evaporated onto CdS/ITO coated glass substrates. The structure of the device was glass/ ITO/CdS/SnS/In/Ag and I-...SnS/CdS heterojunction is a promising system for photovoltaic application. SnS thin films were thermally evaporated onto CdS/ITO coated glass substrates. The structure of the device was glass/ ITO/CdS/SnS/In/Ag and I-V curves of the fabricated devices were measured under dark and illuminated conditions, respectively. We discussed the relationship of the thickness and annealing temperature of CdS buffer layers with the performance of SnS/CdS heterojunctions. The optimum thickness and annealing temperature of the CdS buffer layers were 50 nm and 350°C, respectively. The best device had a conversion efficiency of 0.0025%.展开更多
The films of two x-shape oligo(thiophene)s, 3, 4-dibithienyl-2, 5-dithienylthiophene (7T) and 2, 5-dibithienyl-3, 4- ditrithienylthiophene (11T), which are prepared by vacuum evaporation, have been investigated ...The films of two x-shape oligo(thiophene)s, 3, 4-dibithienyl-2, 5-dithienylthiophene (7T) and 2, 5-dibithienyl-3, 4- ditrithienylthiophene (11T), which are prepared by vacuum evaporation, have been investigated as novel electron donor layers in two-layer photovoltaic cells. UV-Vis absorptions show red-shifted and broadened absorptions of the vacuumevaporated films as compared with those of the corresponding solutions and spin-coating films, which is beneficial for photovoltaic properties. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) measurements show that the vacuum-evaporated films are almost amorphous. Two-layer photovoltaic cells have been realized by the thermal evaporation of 7T and llT as donors and N, N′-bis(1-ethylpropyl)-3, 4:9,10-perylene bis(tetracarboxyl diimide) (EP- PTC) as an acceptor. An energy conversion efficiency (ECE) of 0.18% of the cell based on 7T with an irradiation of white light at 100 mw/cm^2 has been demonstrated by the measurements of current (I)- voltage (V) curves of the cells to be higher than the ECE of the reference system based on donor dihexylterthienyl (H3T) that is linear and without α, β linkage.展开更多
In this study,two fullerenes(C60,C70)and their methano-substitutions(PC61BM,PC71BM),as electron transport materials(ETMs)in perovskite solar cells(Pero-SCs),were systematically studied.As being used as ETMs,methanoful...In this study,two fullerenes(C60,C70)and their methano-substitutions(PC61BM,PC71BM),as electron transport materials(ETMs)in perovskite solar cells(Pero-SCs),were systematically studied.As being used as ETMs,methanofullerenes,though with lower electron mobility compared to the counterpart pristine fullerenes,lead to higher power conversion efficiencies(PCEs)of Pero-SCs.The difference is likely caused by the fill-out vacancies and smoother morphology of the interfaces between ETM and perovskite layers,as they were prepared by different methods.In addition,compared to C60 and PC61BM,C70 and PC71BM showed priority in terms of short-circuit current density,which should be attributed to fast free charge extraction abilities.展开更多
文摘SnS/CdS heterojunction is a promising system for photovoltaic application. SnS thin films were thermally evaporated onto CdS/ITO coated glass substrates. The structure of the device was glass/ ITO/CdS/SnS/In/Ag and I-V curves of the fabricated devices were measured under dark and illuminated conditions, respectively. We discussed the relationship of the thickness and annealing temperature of CdS buffer layers with the performance of SnS/CdS heterojunctions. The optimum thickness and annealing temperature of the CdS buffer layers were 50 nm and 350°C, respectively. The best device had a conversion efficiency of 0.0025%.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2002CB613401)the National Natural Science Foundation of China (Grant Nos 20474023 and 50673035)+2 种基金the Cooperation Research Project of National Natural Science Foundation of China and Korea Science and Engineering Foundation (Grant No 20611140613)the Research Project of Jilin Province (Grant Nos 20050504 and 20060702)the Research Project of Changchun City (Grant No 06GH03)
文摘The films of two x-shape oligo(thiophene)s, 3, 4-dibithienyl-2, 5-dithienylthiophene (7T) and 2, 5-dibithienyl-3, 4- ditrithienylthiophene (11T), which are prepared by vacuum evaporation, have been investigated as novel electron donor layers in two-layer photovoltaic cells. UV-Vis absorptions show red-shifted and broadened absorptions of the vacuumevaporated films as compared with those of the corresponding solutions and spin-coating films, which is beneficial for photovoltaic properties. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) measurements show that the vacuum-evaporated films are almost amorphous. Two-layer photovoltaic cells have been realized by the thermal evaporation of 7T and llT as donors and N, N′-bis(1-ethylpropyl)-3, 4:9,10-perylene bis(tetracarboxyl diimide) (EP- PTC) as an acceptor. An energy conversion efficiency (ECE) of 0.18% of the cell based on 7T with an irradiation of white light at 100 mw/cm^2 has been demonstrated by the measurements of current (I)- voltage (V) curves of the cells to be higher than the ECE of the reference system based on donor dihexylterthienyl (H3T) that is linear and without α, β linkage.
基金the National Natural Science Foundation of China(51303118,91333204)the Natural Science Foundation of Jiangsu Province(BK20130289)+3 种基金the Ph.D.Programs Foundation of Ministry of Education of China(20133201120008)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Scientific Research Foundation for Returned Scholars,Ministry of Education of ChinaBeijing National Laboratory for Molecular Sciences,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
文摘In this study,two fullerenes(C60,C70)and their methano-substitutions(PC61BM,PC71BM),as electron transport materials(ETMs)in perovskite solar cells(Pero-SCs),were systematically studied.As being used as ETMs,methanofullerenes,though with lower electron mobility compared to the counterpart pristine fullerenes,lead to higher power conversion efficiencies(PCEs)of Pero-SCs.The difference is likely caused by the fill-out vacancies and smoother morphology of the interfaces between ETM and perovskite layers,as they were prepared by different methods.In addition,compared to C60 and PC61BM,C70 and PC71BM showed priority in terms of short-circuit current density,which should be attributed to fast free charge extraction abilities.