BACKGROUND Pylorus and vagus nerve-preserving gastrectomy(PPG)is a function-preserving surgery for early gastric cancer(GC)that has gained considerable interest in the recent years.The operative technique performed us...BACKGROUND Pylorus and vagus nerve-preserving gastrectomy(PPG)is a function-preserving surgery for early gastric cancer(GC)that has gained considerable interest in the recent years.The operative technique performed using the Da Vinci Xi robot system is considered ideal for open and laparoscopic surgery.AIM To introduce Da Vinci Xi robot-assisted PPG(RAPPG)-based operative procedure and technical points as well as report the initial experience based on the clinical pathology data of eight cases of early GC.METHODS Da Vinci Xi robot-assisted pylorus and vagus nerve-preserving gastrectomy(RAPPG)was performed for 11 consecutive patients with middle GC from December 2020 to July 2021.Outcome measures were postoperative morbidity,operative time,blood loss,number of lymph nodes harvested,postoperative hospital stay,time to first flatus,time to diet,and resection margins.RESULTS Eight of the 11 patients who were pathologically diagnosed with early GC were enrolled in a retrospective study to assess the feasibility and safety of RAPPG.The mean operative time,mean blood loss,mean number of lymph nodes harvested,length of preserved pylorus canal,distal margin,and proximal margin were 330.63±47.24 min,57.50±37.70 mL,18.63±10.57,3.63±0.88 cm,3.50±1.31 cm,and 3.63±1.19 cm,respectively.None of the cases required conversion to laparotomy.Postoperative complications occurred in two(25.0%)patients.Postoperative complications were hyperamylasemia and gastric stasis in one case and incision infection in the other.Time to first flatus was 3.75±2.49 d after the operation,andpostoperative hospital stay was 10.13±4.55 d.CONCLUSIONThe core technique in the Da Vinci Xi RAPPG is lymph node dissection and the anatomic methodof the nerve.Robotic surgical procedures are feasible and safe.With the progress of surgicaltechnology,optimization of medical insurance structure,and emergence of evidence-basedmedicine,automated surgery systems will have a broad application in clinical treatment.展开更多
Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life.Many stro ke victims are left with long-term neurological dysfunction,which adversely affects the ...Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life.Many stro ke victims are left with long-term neurological dysfunction,which adversely affects the well-being of the individual and the broader socioeconomic impact.Currently,poststroke brain dysfunction is a major and difficult area of treatment.Vagus nerve stimulation is a Food and Drug Administration-approved exploratory treatment option for autis m,refractory depression,epilepsy,and Alzheimer’s disease.It is expected to be a novel therapeutic technique for the treatment of stroke owing to its association with multiple mechanisms such as alte ring neurotransmitters and the plasticity of central neuro ns.In animal models of acute ischemic stroke,vagus nerve stimulation has been shown to reduce infarct size,reduce post-stroke neurological damage,and improve learning and memory capacity in rats with stroke by reducing the inflammatory response,regulating bloodbrain barrier permeability,and promoting angiogenesis and neurogenesis.At present,vagus nerve stimulation includes both invasive and non-invasive vagus nerve stimulation.Clinical studies have found that invasive vagus nerve stimulation combined with rehabilitation therapy is effective in im proving upper limb motor and cognitive abilities in stroke patients.Further clinical studies have shown that non-invasive vagus nerve stimulation,including ear/ce rvical vagus nerve stimulation,can stimulate vagal projections to the central nervous system similarly to invasive vagus nerve stimulation and can have the same effect.In this paper,we first describe the multiple effects of vagus nerve stimulation in stroke,and then discuss in depth its neuroprotective mechanisms in ischemic stroke.We go on to outline the res ults of the current major clinical applications of invasive and non-invasive vagus nerve stimulation.Finally,we provide a more comprehensive evaluation of the advantages and disadvantages of different types of vagus nerve stimulation in the treatment of cerebral ischemia and provide an outlook on the developmental trends.We believe that vagus nerve stimulation,as an effective treatment for stroke,will be widely used in clinical practice to promote the recovery of stroke patients and reduce the incidence of disability.展开更多
Pylorus- and vagus nerve-preserving partial gastrectomy is important in improving the prognosis of early gastric cancer surgery, reducing surgical complications and improving the quality of life for such patients. In ...Pylorus- and vagus nerve-preserving partial gastrectomy is important in improving the prognosis of early gastric cancer surgery, reducing surgical complications and improving the quality of life for such patients. In the present case, pylorus- and vagus nerve-preserving partial gastrectomy was performed using the bipolar electrocautery dissection technique combined with D2 dissection along the lesser sac.展开更多
This critical review of the literature shows that there is a close link between the microbiome,the gut,and the brain in Parkinson's disease.The vagus nerve,the main component of the parasympathetic nervous system,...This critical review of the literature shows that there is a close link between the microbiome,the gut,and the brain in Parkinson's disease.The vagus nerve,the main component of the parasympathetic nervous system,is involved in the regulation of immune response,digestion,heart rate,and control of mood.It can detect microbiota metabolites through its afferents,transferring this gut information to the central nervous system.Preclinical and clinical studies have shown the important role played by the gut microbiome and gut-related factors in disease development and progression,as well as treatment responses.These findings suggest that the gut microbiome may be a valuable target for new therapeutic strategies for Parkinson's disease.More studies are needed to better understand the underlying biology and how this axis can be modulated for the patient's benefit.展开更多
BACKGROUND: Our previous research proved that vagus nerve stimulation(VNS) improved the neurological outcome after cardiopulmonary resuscitation(CPR) by activating α7 nicotinic acetylcholine receptor(α7nAChR) in a r...BACKGROUND: Our previous research proved that vagus nerve stimulation(VNS) improved the neurological outcome after cardiopulmonary resuscitation(CPR) by activating α7 nicotinic acetylcholine receptor(α7nAChR) in a rat model, but the underlying mechanism of VNS in neuroprotection after CPR remains unclear.METHODS: In vivo, we established a mouse model of cardiac arrest(CA)/CPR to observe the survival rate, and the changes in inflammatory factors and brain tissue after VNS treatment. In vitro, we examined the effects of α7nAChR agonist on ischemia/reperfusion(I/R)-induced inflammation in BV2 cells under oxygen-glucose deprivation/reoxygenation(OGD/R) conditions. We observed the changes in cell survival rate, the levels of inflammatory factors, and the expressions of α7nAChR/Janus kinase 2(JAK2) and toll-like receptor 4(TLR4)/nuclear factor-κB(NF-κB).RESULTS: In vivo, VNS preconditioning enhanced functional recovery, improved the survival rate, and reduced hippocampal CA1 cell damage, and the levels of inflammatory mediators after CA/CPR. The application of α7nAChR agonists provided similar effects against cerebral injury after the return of spontaneous circulation(ROSC), while α7nAChR antagonists reversed these neuroprotective impacts. The in vitro results mostly matched the findings in vivo. OGD/R increased the expression of tumor necrosis factor-alpha(TNF-α), TLR4 and NF-κB p65. When nicotine was added to the OGD/R model, the expression of TLR4, NF-κB p65, and TNF-α decreased, while the phosphorylation of JAK2 increased, which was prevented by preconditioning with α7nAChR or JAK2 antagonists.CONCLUSION: The neuroprotective effect of VNS correlated with the activation of α7nAChR. VNS may alleviate cerebral IR injury by inhibiting TLR4/NF-κB and activating the α7nAChR/JAK2 signaling pathway.展开更多
Microglia are the brain’s primary innate immune cells,and they are activated and affect pro-inflammatory phenotype or regulatory phenotype after ischemic stroke.Vagus nerve stimulation was shown to activate microglia...Microglia are the brain’s primary innate immune cells,and they are activated and affect pro-inflammatory phenotype or regulatory phenotype after ischemic stroke.Vagus nerve stimulation was shown to activate microglial phenotypic changes and exhibit neuroprotective effects in ischemia/reperfusion injury.In this study,we established rat models of ischemic stroke by occlusion of the middle cerebral artery and performed vagus nerve stimulation 30 minutes after modeling.We found that vagus nerve stimulation caused a shift from a pro-inflammatory phenotype to a regulatory phenotype in microglia in the ischemic penumbra.Vagus nerve stimulation decreased the levels of pro-inflammatory phenotype markers inducible nitric oxide synthase and tumor necrosis factorαand increased the expression of regulatory phenotype markers arginase 1 and transforming growth factorβthrough activatingα7 nicotinic acetylcholine receptor expression.Additionally,α7 nicotinic acetylcholine receptor blockade reduced the inhibition of Toll-like receptor 4/nuclear factor kappa-B pathwayassociated proteins,including Toll-like receptor 4,myeloid differentiation factor 88,I kappa B alpha,and phosphorylated-I kappa B alpha,and also weakened the neuroprotective effects of vagus nerve stimulation in ischemic stroke.Vagus nerve stimulation inhibited Toll-like receptor 4/nuclear factor kappa-B expression through activatingα7 nicotinic acetylcholine receptor and regulated microglial polarization after ischemic stroke,thereby playing a role in the treatment of ischemic stroke.Findings from this study confirm the mechanism underlying vagus nerve stimulation against ischemic stroke.展开更多
As a new type of nerve regulation technology, Vagus Nerve Stimulation is currently used in the treatment of nervous system diseases. Auricular Vagus Nerve Stimulation has become one of the research hotspots in this fi...As a new type of nerve regulation technology, Vagus Nerve Stimulation is currently used in the treatment of nervous system diseases. Auricular Vagus Nerve Stimulation has become one of the research hotspots in this field, because there is no implantation risk. However, there is no unified standard for the treatment parameters of aVNS for nervous system diseases. In this paper, the research progress of the anatomical structure and parameters of the vagus nerve and its role in nervous system diseases are reviewed to provide basis for further research.展开更多
Background The modulatory effect of transcutaneous auricular vagus nerve stimulation(taVNS)on attention has varied in previous studies.This inconsistency might be attributed to the combined influence of the modulation...Background The modulatory effect of transcutaneous auricular vagus nerve stimulation(taVNS)on attention has varied in previous studies.This inconsistency might be attributed to the combined influence of the modulation effect on the different attentional functions,including alerting,orienting and executive control.Aims We aimed to preliminarily examine the modulatory effectsoftaVNS on differentattentionalfunctions.Methods Fifty-nine healthy participants were recruited and were randomly assigned to taVNS(receiving taVNS for 20 minutes)or control(receiving taVNS for 30 seconds)groups.All participants underwent a dot-probe task before and after the taVNS/control intervention.Their behavioural performance and electroencephalographic signals during pre-and post-tests were recorded,and different observed variables were extracted and analysed to characterise different attentional systems.Results We observed that active taVNS applied at the left ear significantly improved the overall behavioural performance,that is,shorter reaction time(RT)and lower intra-individual reaction time variability(lIRTV)for right-hand responses when compared with the control condition.In addition,active taVNS resulted in larger P3 and movement-related cortical potential(MRCP)amplitudes associated with right-hand reactions than the control condition.Active taVNS also decreased the difference between the pre-and post-tests in the power spectral density of spontaneous high-αband oscillations at C4 electrode.Importantly,parallel mediation models for right-hand responses showed that the change of P3 amplitude mediated the effects of taVNS on RT and lIRTV.In contrast,the change of MRCP amplitude suppressed the effect of taVNS on the lIRTV.Conclusions Our results provided behavioural and brain evidence supporting the effects of taVNS on different attentional systems,and their interaction further shaped behavioural performance,suggesting a promising role of taVNS in cognitive enhancement.展开更多
Generalized Tonic Clonic Seizure(GTCS)is a form of epileptic seizure in which a patient loses control over their entire body,ultimately leading to loss of consciousness.The Vagus Nerve Stimulator(VNS)is a tool/method ...Generalized Tonic Clonic Seizure(GTCS)is a form of epileptic seizure in which a patient loses control over their entire body,ultimately leading to loss of consciousness.The Vagus Nerve Stimulator(VNS)is a tool/method for treating epileptic episodes that sends counter-electrical stimulations to the Vagus Nerve in order to mitigate epileptic signals from the brain.The machine is a stand-alone device that depends on human decision-making.The proposed framework uses an IoT and Blockchain oversight mechanism to augment the device's transparency.The system counteracts against false-activation by monitoring the patient's vitals through a smart watch and allows only legitimate use.The nominal operating threshold is determined by preprocessing inferences that include an 18-year-old GTCS epileptic patient and a data set of 281 non-GTCS epileptic patients.The proposed system functions as a dual control lock where the IoT system and the manually activation system work in tandem to activate the device.Based on the values sensed by the IoT device,the deployed system is able to make deci-sions and regulate the use of the VNS.The IoT-Blockchain framework is able to fully eradicate false activation by increasing accuracy and transparency,ensur-ing the device is used correctly and safely.展开更多
In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung n...In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung normal vague weighted averaging(log q-rung NVWA),a log q-rung normal vague weighted geometric(log q-rung NVWG),a log generalized q-rung normal vague weighted averaging(log Gq-rung NVWA),and a log generalized q-rungnormal vagueweightedgeometric(logGq-rungNVWG)operator are discussed in this article.Adescription is provided of the scoring function,accuracy function and operational laws of the log q-rung VS.The algorithms underlying these functions are also described.A numerical example is provided to extend the Euclidean distance and the Humming distance.Additionally,idempotency,boundedness,commutativity,and monotonicity of the log q-rung VS are examined as they facilitate recognizing the optimal alternative more quickly and help clarify conceptualization.We chose five anemia patients with four types of symptoms including seizures,emotional shock or hysteria,brain cause,and high fever,who had either retrograde amnesia,anterograde amnesia,transient global amnesia,post-traumatic amnesia,or infantile amnesia.Natural numbers q are used to express the results of the models.To demonstrate the effectiveness and accuracy of the models we are investigating,we compare several existing models with those that have been developed.展开更多
文摘BACKGROUND Pylorus and vagus nerve-preserving gastrectomy(PPG)is a function-preserving surgery for early gastric cancer(GC)that has gained considerable interest in the recent years.The operative technique performed using the Da Vinci Xi robot system is considered ideal for open and laparoscopic surgery.AIM To introduce Da Vinci Xi robot-assisted PPG(RAPPG)-based operative procedure and technical points as well as report the initial experience based on the clinical pathology data of eight cases of early GC.METHODS Da Vinci Xi robot-assisted pylorus and vagus nerve-preserving gastrectomy(RAPPG)was performed for 11 consecutive patients with middle GC from December 2020 to July 2021.Outcome measures were postoperative morbidity,operative time,blood loss,number of lymph nodes harvested,postoperative hospital stay,time to first flatus,time to diet,and resection margins.RESULTS Eight of the 11 patients who were pathologically diagnosed with early GC were enrolled in a retrospective study to assess the feasibility and safety of RAPPG.The mean operative time,mean blood loss,mean number of lymph nodes harvested,length of preserved pylorus canal,distal margin,and proximal margin were 330.63±47.24 min,57.50±37.70 mL,18.63±10.57,3.63±0.88 cm,3.50±1.31 cm,and 3.63±1.19 cm,respectively.None of the cases required conversion to laparotomy.Postoperative complications occurred in two(25.0%)patients.Postoperative complications were hyperamylasemia and gastric stasis in one case and incision infection in the other.Time to first flatus was 3.75±2.49 d after the operation,andpostoperative hospital stay was 10.13±4.55 d.CONCLUSIONThe core technique in the Da Vinci Xi RAPPG is lymph node dissection and the anatomic methodof the nerve.Robotic surgical procedures are feasible and safe.With the progress of surgicaltechnology,optimization of medical insurance structure,and emergence of evidence-basedmedicine,automated surgery systems will have a broad application in clinical treatment.
基金supported by the Natural Science Foundation of Hubei Province,No.2022CBF680Independent Scientific Research Project of Wuhan University,No.2042022kf1119(both to LD)。
文摘Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life.Many stro ke victims are left with long-term neurological dysfunction,which adversely affects the well-being of the individual and the broader socioeconomic impact.Currently,poststroke brain dysfunction is a major and difficult area of treatment.Vagus nerve stimulation is a Food and Drug Administration-approved exploratory treatment option for autis m,refractory depression,epilepsy,and Alzheimer’s disease.It is expected to be a novel therapeutic technique for the treatment of stroke owing to its association with multiple mechanisms such as alte ring neurotransmitters and the plasticity of central neuro ns.In animal models of acute ischemic stroke,vagus nerve stimulation has been shown to reduce infarct size,reduce post-stroke neurological damage,and improve learning and memory capacity in rats with stroke by reducing the inflammatory response,regulating bloodbrain barrier permeability,and promoting angiogenesis and neurogenesis.At present,vagus nerve stimulation includes both invasive and non-invasive vagus nerve stimulation.Clinical studies have found that invasive vagus nerve stimulation combined with rehabilitation therapy is effective in im proving upper limb motor and cognitive abilities in stroke patients.Further clinical studies have shown that non-invasive vagus nerve stimulation,including ear/ce rvical vagus nerve stimulation,can stimulate vagal projections to the central nervous system similarly to invasive vagus nerve stimulation and can have the same effect.In this paper,we first describe the multiple effects of vagus nerve stimulation in stroke,and then discuss in depth its neuroprotective mechanisms in ischemic stroke.We go on to outline the res ults of the current major clinical applications of invasive and non-invasive vagus nerve stimulation.Finally,we provide a more comprehensive evaluation of the advantages and disadvantages of different types of vagus nerve stimulation in the treatment of cerebral ischemia and provide an outlook on the developmental trends.We believe that vagus nerve stimulation,as an effective treatment for stroke,will be widely used in clinical practice to promote the recovery of stroke patients and reduce the incidence of disability.
文摘Pylorus- and vagus nerve-preserving partial gastrectomy is important in improving the prognosis of early gastric cancer surgery, reducing surgical complications and improving the quality of life for such patients. In the present case, pylorus- and vagus nerve-preserving partial gastrectomy was performed using the bipolar electrocautery dissection technique combined with D2 dissection along the lesser sac.
基金Medical School of the Christus University Center(UNICHRISTUS)Federal University of Ceará(UFC)Fundacao de AmparoàPesquisa do Estado de S?o Paulo(FAPESP,grants 2021/06473-4)(to JCCS)。
文摘This critical review of the literature shows that there is a close link between the microbiome,the gut,and the brain in Parkinson's disease.The vagus nerve,the main component of the parasympathetic nervous system,is involved in the regulation of immune response,digestion,heart rate,and control of mood.It can detect microbiota metabolites through its afferents,transferring this gut information to the central nervous system.Preclinical and clinical studies have shown the important role played by the gut microbiome and gut-related factors in disease development and progression,as well as treatment responses.These findings suggest that the gut microbiome may be a valuable target for new therapeutic strategies for Parkinson's disease.More studies are needed to better understand the underlying biology and how this axis can be modulated for the patient's benefit.
基金supported by research grants from the National Natural Science Foundation of China (grant no. 81571866 and grant no. 82072137)。
文摘BACKGROUND: Our previous research proved that vagus nerve stimulation(VNS) improved the neurological outcome after cardiopulmonary resuscitation(CPR) by activating α7 nicotinic acetylcholine receptor(α7nAChR) in a rat model, but the underlying mechanism of VNS in neuroprotection after CPR remains unclear.METHODS: In vivo, we established a mouse model of cardiac arrest(CA)/CPR to observe the survival rate, and the changes in inflammatory factors and brain tissue after VNS treatment. In vitro, we examined the effects of α7nAChR agonist on ischemia/reperfusion(I/R)-induced inflammation in BV2 cells under oxygen-glucose deprivation/reoxygenation(OGD/R) conditions. We observed the changes in cell survival rate, the levels of inflammatory factors, and the expressions of α7nAChR/Janus kinase 2(JAK2) and toll-like receptor 4(TLR4)/nuclear factor-κB(NF-κB).RESULTS: In vivo, VNS preconditioning enhanced functional recovery, improved the survival rate, and reduced hippocampal CA1 cell damage, and the levels of inflammatory mediators after CA/CPR. The application of α7nAChR agonists provided similar effects against cerebral injury after the return of spontaneous circulation(ROSC), while α7nAChR antagonists reversed these neuroprotective impacts. The in vitro results mostly matched the findings in vivo. OGD/R increased the expression of tumor necrosis factor-alpha(TNF-α), TLR4 and NF-κB p65. When nicotine was added to the OGD/R model, the expression of TLR4, NF-κB p65, and TNF-α decreased, while the phosphorylation of JAK2 increased, which was prevented by preconditioning with α7nAChR or JAK2 antagonists.CONCLUSION: The neuroprotective effect of VNS correlated with the activation of α7nAChR. VNS may alleviate cerebral IR injury by inhibiting TLR4/NF-κB and activating the α7nAChR/JAK2 signaling pathway.
基金supported by the Natural Science Foundation of Chongqing,No.cstc2019jcyj-msxm X0026the Medical Scientific Research Projects Foundation of Chongqing,No.2021ZY023818the Natural Science Foundation of Chongqing,No.cstc2018jcyj AX0180(all to GWJ)。
文摘Microglia are the brain’s primary innate immune cells,and they are activated and affect pro-inflammatory phenotype or regulatory phenotype after ischemic stroke.Vagus nerve stimulation was shown to activate microglial phenotypic changes and exhibit neuroprotective effects in ischemia/reperfusion injury.In this study,we established rat models of ischemic stroke by occlusion of the middle cerebral artery and performed vagus nerve stimulation 30 minutes after modeling.We found that vagus nerve stimulation caused a shift from a pro-inflammatory phenotype to a regulatory phenotype in microglia in the ischemic penumbra.Vagus nerve stimulation decreased the levels of pro-inflammatory phenotype markers inducible nitric oxide synthase and tumor necrosis factorαand increased the expression of regulatory phenotype markers arginase 1 and transforming growth factorβthrough activatingα7 nicotinic acetylcholine receptor expression.Additionally,α7 nicotinic acetylcholine receptor blockade reduced the inhibition of Toll-like receptor 4/nuclear factor kappa-B pathwayassociated proteins,including Toll-like receptor 4,myeloid differentiation factor 88,I kappa B alpha,and phosphorylated-I kappa B alpha,and also weakened the neuroprotective effects of vagus nerve stimulation in ischemic stroke.Vagus nerve stimulation inhibited Toll-like receptor 4/nuclear factor kappa-B expression through activatingα7 nicotinic acetylcholine receptor and regulated microglial polarization after ischemic stroke,thereby playing a role in the treatment of ischemic stroke.Findings from this study confirm the mechanism underlying vagus nerve stimulation against ischemic stroke.
文摘As a new type of nerve regulation technology, Vagus Nerve Stimulation is currently used in the treatment of nervous system diseases. Auricular Vagus Nerve Stimulation has become one of the research hotspots in this field, because there is no implantation risk. However, there is no unified standard for the treatment parameters of aVNS for nervous system diseases. In this paper, the research progress of the anatomical structure and parameters of the vagus nerve and its role in nervous system diseases are reviewed to provide basis for further research.
基金supported by the National Natural Science Foundation of China(32071061,32171077)the Beijing Natural Science Foundation(JQ22018)and the Scientific Foundation of the Institute of Psychology,Chinese Academy of Sciences(E2CX4015).
文摘Background The modulatory effect of transcutaneous auricular vagus nerve stimulation(taVNS)on attention has varied in previous studies.This inconsistency might be attributed to the combined influence of the modulation effect on the different attentional functions,including alerting,orienting and executive control.Aims We aimed to preliminarily examine the modulatory effectsoftaVNS on differentattentionalfunctions.Methods Fifty-nine healthy participants were recruited and were randomly assigned to taVNS(receiving taVNS for 20 minutes)or control(receiving taVNS for 30 seconds)groups.All participants underwent a dot-probe task before and after the taVNS/control intervention.Their behavioural performance and electroencephalographic signals during pre-and post-tests were recorded,and different observed variables were extracted and analysed to characterise different attentional systems.Results We observed that active taVNS applied at the left ear significantly improved the overall behavioural performance,that is,shorter reaction time(RT)and lower intra-individual reaction time variability(lIRTV)for right-hand responses when compared with the control condition.In addition,active taVNS resulted in larger P3 and movement-related cortical potential(MRCP)amplitudes associated with right-hand reactions than the control condition.Active taVNS also decreased the difference between the pre-and post-tests in the power spectral density of spontaneous high-αband oscillations at C4 electrode.Importantly,parallel mediation models for right-hand responses showed that the change of P3 amplitude mediated the effects of taVNS on RT and lIRTV.In contrast,the change of MRCP amplitude suppressed the effect of taVNS on the lIRTV.Conclusions Our results provided behavioural and brain evidence supporting the effects of taVNS on different attentional systems,and their interaction further shaped behavioural performance,suggesting a promising role of taVNS in cognitive enhancement.
文摘Generalized Tonic Clonic Seizure(GTCS)is a form of epileptic seizure in which a patient loses control over their entire body,ultimately leading to loss of consciousness.The Vagus Nerve Stimulator(VNS)is a tool/method for treating epileptic episodes that sends counter-electrical stimulations to the Vagus Nerve in order to mitigate epileptic signals from the brain.The machine is a stand-alone device that depends on human decision-making.The proposed framework uses an IoT and Blockchain oversight mechanism to augment the device's transparency.The system counteracts against false-activation by monitoring the patient's vitals through a smart watch and allows only legitimate use.The nominal operating threshold is determined by preprocessing inferences that include an 18-year-old GTCS epileptic patient and a data set of 281 non-GTCS epileptic patients.The proposed system functions as a dual control lock where the IoT system and the manually activation system work in tandem to activate the device.Based on the values sensed by the IoT device,the deployed system is able to make deci-sions and regulate the use of the VNS.The IoT-Blockchain framework is able to fully eradicate false activation by increasing accuracy and transparency,ensur-ing the device is used correctly and safely.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(No.RS-2023-00218176)Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korea government(MOTIE)(P0012724)The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung normal vague weighted averaging(log q-rung NVWA),a log q-rung normal vague weighted geometric(log q-rung NVWG),a log generalized q-rung normal vague weighted averaging(log Gq-rung NVWA),and a log generalized q-rungnormal vagueweightedgeometric(logGq-rungNVWG)operator are discussed in this article.Adescription is provided of the scoring function,accuracy function and operational laws of the log q-rung VS.The algorithms underlying these functions are also described.A numerical example is provided to extend the Euclidean distance and the Humming distance.Additionally,idempotency,boundedness,commutativity,and monotonicity of the log q-rung VS are examined as they facilitate recognizing the optimal alternative more quickly and help clarify conceptualization.We chose five anemia patients with four types of symptoms including seizures,emotional shock or hysteria,brain cause,and high fever,who had either retrograde amnesia,anterograde amnesia,transient global amnesia,post-traumatic amnesia,or infantile amnesia.Natural numbers q are used to express the results of the models.To demonstrate the effectiveness and accuracy of the models we are investigating,we compare several existing models with those that have been developed.