This paper summarized recent achievements obtained by the authors about the box dimensions of the Besicovitch functions given bywhere 1 < s < 2, λk> tends to infinity as k→∞ and λk satisfies λk+1/λk≥λ...This paper summarized recent achievements obtained by the authors about the box dimensions of the Besicovitch functions given bywhere 1 < s < 2, λk> tends to infinity as k→∞ and λk satisfies λk+1/λk≥λ>1. The results show thatis a necessary and sufficient condition for Graph(B(t)) to have same upper and lower box dimensions. For the fractional Riemann-Liouvtlle differential operator Du and the fractional integral operator D-v, the results show that if A is sufficiently large, then a necessary and sufficient condition for box dimensionof Graph(D-v(B)), 0 < v < s - 1, to be s - v and box dimension of Graph(Du(B)), 0 < u < 2 - s, to bes + u is also lim.展开更多
The technology of plasma arc was used to modify the interface adhesion between c hromium coating and steel substrate. The interface microstructure was studied as a function of plasma arc processing parameters. Microst...The technology of plasma arc was used to modify the interface adhesion between c hromium coating and steel substrate. The interface microstructure was studied as a function of plasma arc processing parameters. Microstructure analysis was per formed by optical microscopy, scanning electron microscopy and electron probe. T he microhardness distribution along the depth of a cross-section of the chromium coating and the substrate was measured. The results show the energy density of transferred plasma arc is obviously higher than plasma non-transferred arc. The molten interface was obtained by plasma transferred arc. Interfaces between chro mium coating and steel substrate can be divided by plasma non-transferred arc in to three classes: non-molten, a little molten and molten. Good interface bonding was obtained by proper process parameters. The microhardness of chromium coatin g decreases with increasing energy density of plasma arc.展开更多
The addition of electrons to form gas-phase multiply charged anions(MCAs)normally requires sophisticated experiments or calculations.In this work,the factors stabilizing the MCAs,the maximum electron uptake of gas-pha...The addition of electrons to form gas-phase multiply charged anions(MCAs)normally requires sophisticated experiments or calculations.In this work,the factors stabilizing the MCAs,the maximum electron uptake of gas-phase molecules,X,and the electronic stability of MCAs X^(Q-),are discussed.The drawbacks encountered when applying computational and/or conceptual density functional theory(DFT)to MCAs are highlighted.We develop and test a different model based on the valence-state concept.As in DFT,the electronic energy,E(N,v_(ex)),is a continuous function of the average electron number,N,and the external potential,v_(ex),of the nuclei.The valence-state-parabola is a second-order polynomial that allows extending E(N,v_(ex))to dianions and higher MCAs.The model expresses the maximum electron acceptance,Q_(max),and the higher electron affinities,A_Q,as simple functions of the firstelectron affinity,A_1,and the ionization energy,I,of the"ancestor"system.Thus,the maximum electron acceptance is Q_(max,calc)=1+12A_1/7(I-A_1).The ground-state parabola model of the conceptual DFT yields approximately half of this value,and it is termed Q_(max,GS)=?+A_1/(I-A_1).A large variety of molecules are evaluated including fullerenes,metal clusters,super-pnictogens,super-halogens(OF_3),super-alkali species(OLi_3),and neutral or charged transition-metal complexes,AB_(m )L_n^(0/+/-).The calculated second electron affinity A_(2,calc)=A_1-(7/12)(I-A_1)is linearly correlated to the literature references A_(2,lit) with a correlation coefficient R=0.998.A_2 or A_3 values are predicted for further 24 species.The appearance sizes,n_(ap)^(3-),of triply charged anionic clusters and fullerenes are calculated in agreement with the literature.展开更多
基金Research supported by national Natural Science Foundation of China (10141001)Zhejiang Provincial Natural Science Foundation 9100042 and 1010009.
文摘This paper summarized recent achievements obtained by the authors about the box dimensions of the Besicovitch functions given bywhere 1 < s < 2, λk> tends to infinity as k→∞ and λk satisfies λk+1/λk≥λ>1. The results show thatis a necessary and sufficient condition for Graph(B(t)) to have same upper and lower box dimensions. For the fractional Riemann-Liouvtlle differential operator Du and the fractional integral operator D-v, the results show that if A is sufficiently large, then a necessary and sufficient condition for box dimensionof Graph(D-v(B)), 0 < v < s - 1, to be s - v and box dimension of Graph(Du(B)), 0 < u < 2 - s, to bes + u is also lim.
文摘The technology of plasma arc was used to modify the interface adhesion between c hromium coating and steel substrate. The interface microstructure was studied as a function of plasma arc processing parameters. Microstructure analysis was per formed by optical microscopy, scanning electron microscopy and electron probe. T he microhardness distribution along the depth of a cross-section of the chromium coating and the substrate was measured. The results show the energy density of transferred plasma arc is obviously higher than plasma non-transferred arc. The molten interface was obtained by plasma transferred arc. Interfaces between chro mium coating and steel substrate can be divided by plasma non-transferred arc in to three classes: non-molten, a little molten and molten. Good interface bonding was obtained by proper process parameters. The microhardness of chromium coatin g decreases with increasing energy density of plasma arc.
文摘The addition of electrons to form gas-phase multiply charged anions(MCAs)normally requires sophisticated experiments or calculations.In this work,the factors stabilizing the MCAs,the maximum electron uptake of gas-phase molecules,X,and the electronic stability of MCAs X^(Q-),are discussed.The drawbacks encountered when applying computational and/or conceptual density functional theory(DFT)to MCAs are highlighted.We develop and test a different model based on the valence-state concept.As in DFT,the electronic energy,E(N,v_(ex)),is a continuous function of the average electron number,N,and the external potential,v_(ex),of the nuclei.The valence-state-parabola is a second-order polynomial that allows extending E(N,v_(ex))to dianions and higher MCAs.The model expresses the maximum electron acceptance,Q_(max),and the higher electron affinities,A_Q,as simple functions of the firstelectron affinity,A_1,and the ionization energy,I,of the"ancestor"system.Thus,the maximum electron acceptance is Q_(max,calc)=1+12A_1/7(I-A_1).The ground-state parabola model of the conceptual DFT yields approximately half of this value,and it is termed Q_(max,GS)=?+A_1/(I-A_1).A large variety of molecules are evaluated including fullerenes,metal clusters,super-pnictogens,super-halogens(OF_3),super-alkali species(OLi_3),and neutral or charged transition-metal complexes,AB_(m )L_n^(0/+/-).The calculated second electron affinity A_(2,calc)=A_1-(7/12)(I-A_1)is linearly correlated to the literature references A_(2,lit) with a correlation coefficient R=0.998.A_2 or A_3 values are predicted for further 24 species.The appearance sizes,n_(ap)^(3-),of triply charged anionic clusters and fullerenes are calculated in agreement with the literature.