针对自适应中值滤波在窗口迭代过程中存在像素点重复参与运算导致算法复杂度较高的问题,提出了一种改进的中值滤波算法.首先依据有效像素点与窗口中心点间的坐标距离来快速确定最佳滤波窗口尺寸,避免了窗口迭代造成的像素点重复排序;之...针对自适应中值滤波在窗口迭代过程中存在像素点重复参与运算导致算法复杂度较高的问题,提出了一种改进的中值滤波算法.首先依据有效像素点与窗口中心点间的坐标距离来快速确定最佳滤波窗口尺寸,避免了窗口迭代造成的像素点重复排序;之后对窗口内的有效像素点进行取中值操作,有效削弱了噪声点的干扰,进一步提升了图像滤波的质量.经实验验证,与自适应中值滤波算法比较,复杂度显著降低,峰值信噪比(peak signal to noise ratio,PSNR)值平均提高10 d B左右.和同类文献比较在算法复杂度和图像降噪效果间做出了一个较佳的权衡.最后将该算法应用于Kinect深度图降噪上获得了不错的效果.展开更多
针对复杂背景下点目标的单帧检测,明确提出有效像元的检测,基于点目标的局部相关性以及目标和背景的局部差异,提出了一种改进的基于马尔可夫随机场(Markov Random Field,MRF)的点目标检测算法.该算法依据一种基于复杂背景可分性度量的...针对复杂背景下点目标的单帧检测,明确提出有效像元的检测,基于点目标的局部相关性以及目标和背景的局部差异,提出了一种改进的基于马尔可夫随机场(Markov Random Field,MRF)的点目标检测算法.该算法依据一种基于复杂背景可分性度量的信杂比(Signal to Clutter Ratio,SCR)准则对MRF进行迭代优化的初始配置.在此基础上,改进了MRF标记场的先验概率模型,设计了一种基于欧式空间度量的MRF先验概率能量函数,构造了MRF对欧式空间距离的标记场概率响应模型,并通过高阶能量函数提高了目标概率对邻域标记变化的响应能力.分析结果表明:该算法在结构化背景中的性能更优,相比于传统Potts模型在目标辐射维度的检测能力更强,是一种鲁棒性更强的检测算法.展开更多
文摘针对自适应中值滤波在窗口迭代过程中存在像素点重复参与运算导致算法复杂度较高的问题,提出了一种改进的中值滤波算法.首先依据有效像素点与窗口中心点间的坐标距离来快速确定最佳滤波窗口尺寸,避免了窗口迭代造成的像素点重复排序;之后对窗口内的有效像素点进行取中值操作,有效削弱了噪声点的干扰,进一步提升了图像滤波的质量.经实验验证,与自适应中值滤波算法比较,复杂度显著降低,峰值信噪比(peak signal to noise ratio,PSNR)值平均提高10 d B左右.和同类文献比较在算法复杂度和图像降噪效果间做出了一个较佳的权衡.最后将该算法应用于Kinect深度图降噪上获得了不错的效果.
文摘针对复杂背景下点目标的单帧检测,明确提出有效像元的检测,基于点目标的局部相关性以及目标和背景的局部差异,提出了一种改进的基于马尔可夫随机场(Markov Random Field,MRF)的点目标检测算法.该算法依据一种基于复杂背景可分性度量的信杂比(Signal to Clutter Ratio,SCR)准则对MRF进行迭代优化的初始配置.在此基础上,改进了MRF标记场的先验概率模型,设计了一种基于欧式空间度量的MRF先验概率能量函数,构造了MRF对欧式空间距离的标记场概率响应模型,并通过高阶能量函数提高了目标概率对邻域标记变化的响应能力.分析结果表明:该算法在结构化背景中的性能更优,相比于传统Potts模型在目标辐射维度的检测能力更强,是一种鲁棒性更强的检测算法.