The leaf area index(LAI) is a critical biophysical variable that describes canopy geometric structures and growth conditions.It is also an important input parameter for climate,energy and carbon cycle models.The scali...The leaf area index(LAI) is a critical biophysical variable that describes canopy geometric structures and growth conditions.It is also an important input parameter for climate,energy and carbon cycle models.The scaling effect of the LAI has always been of concern.Considering the effects of the clumping indices on the BRDF models of discrete canopies,an effective LAI is defined.The effective LAI has the same function of describing the leaf density as does the traditional LAI.Therefore,our study was based on the effective LAI.The spatial scaling effect of discrete canopies significantly differed from that of continuous canopies.Based on the directional second-derivative method of effective LAI retrieval,the mechanism responsible for the spatial scaling effect of the discrete-canopy LAI is discussed and a scaling transformation formula for the effective LAI is suggested in this paper.Theoretical analysis shows that the mean values of effective LAIs retrieved from high-resolution pixels were always equal to or larger than the effective LAIs retrieved from corresponding coarse-resolution pixels.Both the conclusions and the scaling transformation formula were validated with airborne hyperspectral remote sensing imagery obtained in Huailai County,Zhangjiakou,Hebei Province,China.The scaling transformation formula agreed well with the effective LAI retrieved from hyperspectral remote sensing imagery.展开更多
Spectral index methodology has been widely used in Leaf Area Index(LAI) retrieval at different spatial scales. There are differences in the spectral response of different remote sensors and thus spectral scale effect ...Spectral index methodology has been widely used in Leaf Area Index(LAI) retrieval at different spatial scales. There are differences in the spectral response of different remote sensors and thus spectral scale effect generated during the use of spectral indices to retrieve LAI. In this study, PROSPECT, leaf optical properties model and Scattering by Arbitrarily Inclined Layers(SAIL) model, were used to simulate canopy spectral reflectance with a bandwidth of 5 nm and a Gaussian spectral response function was employed to simulate the spectral data at six bandwidths ranging from 10 to 35 nm. Additionally, for bandwidths from 5 to 35 nm, the correlation between the spectral index and LAI, and the sensitivities of the spectral index to changes in LAI and bandwidth were analyzed. Finally, the reflectance data at six bandwidths ranging from 40 to 65 nm were used to verify the spectral scale effect generated during the use of the spectral index to retrieve LAI. Results indicate that Vegetation Index of the Universal Pattern Decomposition(VIUPD) had the highest accuracy during LAI retrieval. Followed by Normalized Difference Vegetation Index(NDVI), Modified Simple Ratio Indices(MSRI) and Triangle Vegetation Index(TVI), although the coefficient of determination R^2 was higher than 0.96, the retrieved LAI values were less than the actual value and thus lacked validity. Other spectral indices were significantly affected by the spectral scale effect with poor retrieval results. In this study, VIUPD, which exhibited a relatively good correlation and sensitivity to LAI, was less affected by the spectral scale effect and had a relatively good retrieval capability. This conclusion supports a purported feature independent of the sensor of this model and also confirms the great potential of VIUPD for retrieval of physicochemical parameters of vegetation using multi-source remote sensing data.展开更多
Validation is one of the most important processes used to evaluate whether remotely sensed products can accurately reflect land surface configuration. Leaf Area Index( LAI) is a key parameter that represents vegetatio...Validation is one of the most important processes used to evaluate whether remotely sensed products can accurately reflect land surface configuration. Leaf Area Index( LAI) is a key parameter that represents vegetation canopy structures and growth conditions. Accurate evaluation of LAI products is the basis for applying them to land surface models. In this study,validation methods of coarse resolution MODIS and GLASS LAI products for heterogeneous pixels are established on the basis of the scaling effect and the scaling transformation. Considering spatial heterogeneity and growth difference,we transformed LAI from field measurements into a 1 km resolution scale with the aid of middle resolution images. We used average LAI and apparent LAI separately to validate the algorithms and products of MODIS and GLASS LAI. Two study areas,Hebi City and the Yingke Oasis,were selected for validation. Both MODIS and GLASS LAI products underestimate the true LAI in crop area. However,this result cannot be completely attributed to their algorithms. Instead,the primary reason is the heterogeneity and nonuniformity of the coarse pixels.Underestimation is evident in the Yingke Oasis,where heterogeneity is significant. Given that GLASS LAI product is the fusion of multiple LAI products,the mean value of this product is closer to the real situation,but the dynamic range is narrower than that of MODIS LAI product.展开更多
Accurate estimation of crop yields is crucial for ensuring food security. However, crops are distributed so fragmentally in China that mixed pixels account for a large proportion in moderate and coarse resolution remo...Accurate estimation of crop yields is crucial for ensuring food security. However, crops are distributed so fragmentally in China that mixed pixels account for a large proportion in moderate and coarse resolution remote sensing images. As a result, unmixing of mixed pixel becomes a major problem to estimate crop yield by means of remote sensing method. Aimed at mixed pixels, we developed a new method to introduce additional information contained in the spatial scaling transformation equation to the canopy reflectance model. The crop area and LAI can be retrieved simultaneously. On the basis of a precise and simple canopy reflectance model, directional second derivative method was chosen to retrieve LAI from optimal bands of hyper-spectral data; this method can reduce the impact of the canopy non-isotropic features and soil background. To evaluate the performance of the method, Yingke Oasis, Zhangye City, Gansu Province, was chosen as the validation area. This area was covered mainly by maize and wheat. A Hyperion/EO-1 image with the 30 m spatial resolution was acquired on July 15, 2008. Images of 180 m and 1080 m resolutions were generated by linearly interpolating the original Hyperion image to coarser resolutions. Then a multi-scale image serial was obtained. Using the proposed method, we calculated crop area and the average LAI of every 1080 m pixel. A SPOT-5 classification figure serves as the validation data of crop area proportion. Results show that the pattern of crop distribution accords with the classification figure. The errors are restrained mainly to -0.1-0.1, and approximate a Normal Distribution. Meanwhile, 85 LAI values obtained using LAI-2000 Plant Canopy Analyzer, equipped with GPS, were taken as the ground reference. Results show that the standard deviation of the errors is 0.340. The method proposed in the paper is reliable.展开更多
The spatial distribution of sub-pixel components has an impact on retrieval accuracy,and should be accounted for when inverting a three-dimensional adiative transfer model to retrieve leaf area index(LAI).To investiga...The spatial distribution of sub-pixel components has an impact on retrieval accuracy,and should be accounted for when inverting a three-dimensional adiative transfer model to retrieve leaf area index(LAI).To investigate this effect,we constructed three realistic scenarios with the same LAI values and other properties,except that the simulated plants had different distributions.We implemented the radiosity method to subsequently produce synthetic bidirectional reflectance factor(BRF) datasets based upon these simulated scenes.The inversion was conducted using these data,which showed that spatial distribution affects retrieval accuracy.The inversion was also conducted for LAI based on charge-coupled device(CCD) data from the Environment and Disaster Monitor Satellite(HJ-1),which depicted both forest and drought-resistant crop land cover.This showed that heterogeneity in coarse-resolution remote sensing data is the main error source in LAI inversion.The spatial distribution of global fractal dimension index,which can be used to describe the area of sub-pixel components and their spatial distribution modes,shows good consistency with the coarse resolution LAI inversion error.展开更多
As one of the key parameters for characterizing crop canopy structure, Leaf Area Index(LAI) has great significance in monitoring the crop growth and estimating the yield. However, due to the nonlinearity and spatial h...As one of the key parameters for characterizing crop canopy structure, Leaf Area Index(LAI) has great significance in monitoring the crop growth and estimating the yield. However, due to the nonlinearity and spatial heterogeneity of LAI inversion model, there exists scale error in LAI inversion result, which limits the application of LAI product from different remote sensing data. Therefore, it is necessary to conduct studies on scale effect. This study was based on the Heihe Oasis, Zhangye city, Gansu province, China and the following works were carried out: Airborne hyperspectral CASI(Compact Airborne Spectrographic Imager) image and LAI statistic models were adopted in muti-scale LAI inversion. The overall difference of muti-scale LAI inversion was analyzed in an all-round way. This was based on two aspects, "first inversion and then integration" and "first integration and then inversion", and on scale difference characteristics of three scale transformation methods. The generation mechanism of scale effect was refined, and the optimal LAI inversion model was expanded by Taylor expansion. By doing so, it quantitatively analyzed the contribution of various inversion processes to scale effect. It was found that the cubic polynomial regression model based on NDVI(940.7 nm, 712 nm) was the optimal model, where its coefficient of determination R2 and the correlation coefficient of test samples R reached 0.72 and 0.936, respectively. Combined with Taylor expansion, it analyzed the scale error generated by LAI inversion model. After the scale effect correction of one-dimensional and twodimensional variables, the correlation coefficient of CCD-LAI(China Environment Satellite HJ/CCD images) and CASI-LAI products(Compact Airborne Spectro graphic Imager products) increased from 0.793 to 0.875 and 0.901, respectively. The mean value, standard deviation, and relative true value of the two went consistent. Compared with onedimensional variable correction method, the twodimensional method had a better correction result. This research used the effective information in hyperspectral data as sub-pixels and adopted Taylor expansion to correct the scale error in large-scale and low-resolution LAI product, achieving large-scale and high-precision LAI monitoring.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.91025006,40871186,40730525)National Basic Research Program of China(Grant No.2007CB714402)National High Technology Research and Development Program of China(Grant Nos.2009AA12Z143,2009AA122103)
文摘The leaf area index(LAI) is a critical biophysical variable that describes canopy geometric structures and growth conditions.It is also an important input parameter for climate,energy and carbon cycle models.The scaling effect of the LAI has always been of concern.Considering the effects of the clumping indices on the BRDF models of discrete canopies,an effective LAI is defined.The effective LAI has the same function of describing the leaf density as does the traditional LAI.Therefore,our study was based on the effective LAI.The spatial scaling effect of discrete canopies significantly differed from that of continuous canopies.Based on the directional second-derivative method of effective LAI retrieval,the mechanism responsible for the spatial scaling effect of the discrete-canopy LAI is discussed and a scaling transformation formula for the effective LAI is suggested in this paper.Theoretical analysis shows that the mean values of effective LAIs retrieved from high-resolution pixels were always equal to or larger than the effective LAIs retrieved from corresponding coarse-resolution pixels.Both the conclusions and the scaling transformation formula were validated with airborne hyperspectral remote sensing imagery obtained in Huailai County,Zhangjiakou,Hebei Province,China.The scaling transformation formula agreed well with the effective LAI retrieved from hyperspectral remote sensing imagery.
基金National Natural Science Foundation of China(No.41401002)Jilin Province Science Foundation for Youths(No.20160520077JH)
文摘Spectral index methodology has been widely used in Leaf Area Index(LAI) retrieval at different spatial scales. There are differences in the spectral response of different remote sensors and thus spectral scale effect generated during the use of spectral indices to retrieve LAI. In this study, PROSPECT, leaf optical properties model and Scattering by Arbitrarily Inclined Layers(SAIL) model, were used to simulate canopy spectral reflectance with a bandwidth of 5 nm and a Gaussian spectral response function was employed to simulate the spectral data at six bandwidths ranging from 10 to 35 nm. Additionally, for bandwidths from 5 to 35 nm, the correlation between the spectral index and LAI, and the sensitivities of the spectral index to changes in LAI and bandwidth were analyzed. Finally, the reflectance data at six bandwidths ranging from 40 to 65 nm were used to verify the spectral scale effect generated during the use of the spectral index to retrieve LAI. Results indicate that Vegetation Index of the Universal Pattern Decomposition(VIUPD) had the highest accuracy during LAI retrieval. Followed by Normalized Difference Vegetation Index(NDVI), Modified Simple Ratio Indices(MSRI) and Triangle Vegetation Index(TVI), although the coefficient of determination R^2 was higher than 0.96, the retrieved LAI values were less than the actual value and thus lacked validity. Other spectral indices were significantly affected by the spectral scale effect with poor retrieval results. In this study, VIUPD, which exhibited a relatively good correlation and sensitivity to LAI, was less affected by the spectral scale effect and had a relatively good retrieval capability. This conclusion supports a purported feature independent of the sensor of this model and also confirms the great potential of VIUPD for retrieval of physicochemical parameters of vegetation using multi-source remote sensing data.
基金National High Technology Research and Development Program of China(863 Program)(No.2009AA122103,2012AA12A304)National Natural Science Foundation of China(No.91025006,91325105,41271346)National Basic Research Program of China(973 Program)(No.2013CB733402)
文摘Validation is one of the most important processes used to evaluate whether remotely sensed products can accurately reflect land surface configuration. Leaf Area Index( LAI) is a key parameter that represents vegetation canopy structures and growth conditions. Accurate evaluation of LAI products is the basis for applying them to land surface models. In this study,validation methods of coarse resolution MODIS and GLASS LAI products for heterogeneous pixels are established on the basis of the scaling effect and the scaling transformation. Considering spatial heterogeneity and growth difference,we transformed LAI from field measurements into a 1 km resolution scale with the aid of middle resolution images. We used average LAI and apparent LAI separately to validate the algorithms and products of MODIS and GLASS LAI. Two study areas,Hebi City and the Yingke Oasis,were selected for validation. Both MODIS and GLASS LAI products underestimate the true LAI in crop area. However,this result cannot be completely attributed to their algorithms. Instead,the primary reason is the heterogeneity and nonuniformity of the coarse pixels.Underestimation is evident in the Yingke Oasis,where heterogeneity is significant. Given that GLASS LAI product is the fusion of multiple LAI products,the mean value of this product is closer to the real situation,but the dynamic range is narrower than that of MODIS LAI product.
基金supported by National Natural Science Foundation of China (Grant Nos.40871186,40730525,40401036)National High Technology Research and Development Program of China (Grant No.2009AA12Z143)+1 种基金Special Funds for National Basic Research Program of China (Grant No.2007CB714402)"Simultaneous Remote Sensing and Groundbased Experiment in Heihe River Basin and Comprehensive Platform Construction" in Chinese Academy of Sciences’ Action-Plan for West Development (the second phase) (Grant No.KZCX2-XB2-09)
文摘Accurate estimation of crop yields is crucial for ensuring food security. However, crops are distributed so fragmentally in China that mixed pixels account for a large proportion in moderate and coarse resolution remote sensing images. As a result, unmixing of mixed pixel becomes a major problem to estimate crop yield by means of remote sensing method. Aimed at mixed pixels, we developed a new method to introduce additional information contained in the spatial scaling transformation equation to the canopy reflectance model. The crop area and LAI can be retrieved simultaneously. On the basis of a precise and simple canopy reflectance model, directional second derivative method was chosen to retrieve LAI from optimal bands of hyper-spectral data; this method can reduce the impact of the canopy non-isotropic features and soil background. To evaluate the performance of the method, Yingke Oasis, Zhangye City, Gansu Province, was chosen as the validation area. This area was covered mainly by maize and wheat. A Hyperion/EO-1 image with the 30 m spatial resolution was acquired on July 15, 2008. Images of 180 m and 1080 m resolutions were generated by linearly interpolating the original Hyperion image to coarser resolutions. Then a multi-scale image serial was obtained. Using the proposed method, we calculated crop area and the average LAI of every 1080 m pixel. A SPOT-5 classification figure serves as the validation data of crop area proportion. Results show that the pattern of crop distribution accords with the classification figure. The errors are restrained mainly to -0.1-0.1, and approximate a Normal Distribution. Meanwhile, 85 LAI values obtained using LAI-2000 Plant Canopy Analyzer, equipped with GPS, were taken as the ground reference. Results show that the standard deviation of the errors is 0.340. The method proposed in the paper is reliable.
基金supported by National Basic Research Program of China (Grant No.2007CB714402)National Natural Science Foundation of China (Grant Nos.40871173,40601068)+1 种基金National High Technology Research and Development Program of China (Grant No.2008AA12Z107)National Science and Technology Major Project (Grant No.2008ZX10004-012)
文摘The spatial distribution of sub-pixel components has an impact on retrieval accuracy,and should be accounted for when inverting a three-dimensional adiative transfer model to retrieve leaf area index(LAI).To investigate this effect,we constructed three realistic scenarios with the same LAI values and other properties,except that the simulated plants had different distributions.We implemented the radiosity method to subsequently produce synthetic bidirectional reflectance factor(BRF) datasets based upon these simulated scenes.The inversion was conducted using these data,which showed that spatial distribution affects retrieval accuracy.The inversion was also conducted for LAI based on charge-coupled device(CCD) data from the Environment and Disaster Monitor Satellite(HJ-1),which depicted both forest and drought-resistant crop land cover.This showed that heterogeneity in coarse-resolution remote sensing data is the main error source in LAI inversion.The spatial distribution of global fractal dimension index,which can be used to describe the area of sub-pixel components and their spatial distribution modes,shows good consistency with the coarse resolution LAI inversion error.
基金This research was supported by the National Natural Science Foundation of China(41701499)the Sichuan Science and Technology Program(2018GZ0265)+3 种基金the Geomatics Technology and Application Key Laboratory of Qinghai Province,China(QHDX-2018-07)the Major Scientific and Technological Special Program of Sichuan Province,China(2018SZDZX0027)the Key Research and Development Program of Sichuan Province,China(2018SZ027,2019-YF09-00081-SN)Technology Planning Project of Guangdong Province(NO.2018B020207012)。
文摘As one of the key parameters for characterizing crop canopy structure, Leaf Area Index(LAI) has great significance in monitoring the crop growth and estimating the yield. However, due to the nonlinearity and spatial heterogeneity of LAI inversion model, there exists scale error in LAI inversion result, which limits the application of LAI product from different remote sensing data. Therefore, it is necessary to conduct studies on scale effect. This study was based on the Heihe Oasis, Zhangye city, Gansu province, China and the following works were carried out: Airborne hyperspectral CASI(Compact Airborne Spectrographic Imager) image and LAI statistic models were adopted in muti-scale LAI inversion. The overall difference of muti-scale LAI inversion was analyzed in an all-round way. This was based on two aspects, "first inversion and then integration" and "first integration and then inversion", and on scale difference characteristics of three scale transformation methods. The generation mechanism of scale effect was refined, and the optimal LAI inversion model was expanded by Taylor expansion. By doing so, it quantitatively analyzed the contribution of various inversion processes to scale effect. It was found that the cubic polynomial regression model based on NDVI(940.7 nm, 712 nm) was the optimal model, where its coefficient of determination R2 and the correlation coefficient of test samples R reached 0.72 and 0.936, respectively. Combined with Taylor expansion, it analyzed the scale error generated by LAI inversion model. After the scale effect correction of one-dimensional and twodimensional variables, the correlation coefficient of CCD-LAI(China Environment Satellite HJ/CCD images) and CASI-LAI products(Compact Airborne Spectro graphic Imager products) increased from 0.793 to 0.875 and 0.901, respectively. The mean value, standard deviation, and relative true value of the two went consistent. Compared with onedimensional variable correction method, the twodimensional method had a better correction result. This research used the effective information in hyperspectral data as sub-pixels and adopted Taylor expansion to correct the scale error in large-scale and low-resolution LAI product, achieving large-scale and high-precision LAI monitoring.