In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are ...In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are integrated into the electronic controller only from the pump level,leading to the potential instability of the overall system.To solve this problem,a multi-mode electrohydraulic load sensing(MELS)control scheme is proposed especially considering the switching stability from the system level,which includes four working modes of flow control,load sensing,power limitation,and pressure control.Depending on the actual working requirements,the switching rules for the different modes and the switching direction(i.e.,the modes can be switched bilaterally or unilaterally)are defined.The priority of different modes is also defined,from high to low:pressure control,power limitation,load sensing,and flow control.When multiple switching rules are satisfied at the same time,the system switches to the control mode with the highest priority.In addition,the switching stability between flow control and pressure control modes is analyzed,and the controller parameters that guarantee the switching stability are obtained.A comparative study is carried out based on a test rig with a 2-ton hydraulic excavator.The results show that the MELS controller can achieve the control functions of proper flow supplement,power limitation,and pressure cut-off,which has good stability performance when switching between different control modes.This research proposes the MELS control method that realizes the stability of multi-mode switching of the hydraulic system of mobile machinery under different working conditions.展开更多
New advances within the recently rediscovered field of Compressed Sensing (CS) have opened for a great variety of new possibilities in the field of image reconstruction and more specifically in medical image reconstru...New advances within the recently rediscovered field of Compressed Sensing (CS) have opened for a great variety of new possibilities in the field of image reconstruction and more specifically in medical image reconstruction. In this work, a new approach using a CS-based algorithm is proposed and used in order to solve limited-angle problems (LAPs), like the ones that typically occur in computed tomography or electron microscope. This approach is based on a variant of the Robbins-Monro stochastic approximation procedure, developed by Egaziarian, using regularization by a spatially adaptive filter. This proposal consists on filling the gaps of missing or unobserved data with random noise and enabling a spatially adaptive denoising filter to regularize the data and reveal the underlying topology. This method was tested on different 3D transmission electron microscope datasets that presented different missing data artifacts (e.g, wedge or cone shape). The test results show a great potential for solving LAPs using the proposed technique.展开更多
With the rapid advancements in edge computing and artificial intelligence,federated learning(FL)has gained momentum as a promising approach to collaborative data utilization across organizations and devices,while ensu...With the rapid advancements in edge computing and artificial intelligence,federated learning(FL)has gained momentum as a promising approach to collaborative data utilization across organizations and devices,while ensuring data privacy and information security.In order to further harness the energy efficiency of wireless networks,an integrated sensing,communication and computation(ISCC)framework has been proposed,which is anticipated to be a key enabler in the era of 6G networks.Although the advantages of pushing intelligence to edge devices are multi-fold,some challenges arise when incorporating FL into wireless networks under the umbrella of ISCC.This paper provides a comprehensive survey of FL,with special emphasis on the design and optimization of ISCC.We commence by introducing the background and fundamentals of FL and the ISCC framework.Subsequently,the aforementioned challenges are highlighted and the state of the art in potential solutions is reviewed.Finally,design guidelines are provided for the incorporation of FL and ISCC.Overall,this paper aims to contribute to the understanding of FL in the context of wireless networks,with a focus on the ISCC framework,and provide insights into addressing the challenges and optimizing the design for the integration of FL into future 6G networks.展开更多
Error correction has long been suggested to extend the sensitivity of quantum sensors into the Heisenberg Limit. However, operations on logical qubits are only performed through universal gate sets consisting of finit...Error correction has long been suggested to extend the sensitivity of quantum sensors into the Heisenberg Limit. However, operations on logical qubits are only performed through universal gate sets consisting of finite-sized gates such as Clifford + T. Although these logical gate sets allow for universal quantum computation, the finite gate sizes present a problem for quantum sensing, since in sensing protocols, such as the Ramsey measurement protocol, the signal must act continuously. The difficulty in constructing a continuous logical op-erator comes from the Eastin-Knill theorem, which prevents a continuous sig-nal from being both fault-tolerant to local errors and transverse. Since error correction is needed to approach the Heisenberg Limit in a noisy environment, it is important to explore how to construct fault-tolerant continuous operators. In this paper, a protocol to design continuous logical z-rotations is proposed and applied to the Steane Code. The fault tolerance of the designed operator is investigated using the Knill-Laflamme conditions. The Knill-Laflamme condi-tions indicate that the diagonal unitary operator constructed cannot be fault tolerant solely due to the possibilities of X errors on the middle qubit. The ap-proach demonstrated throughout this paper may, however, find success in codes with more qubits such as the Shor code, distance 3 surface code, [15, 1, 3] code, or codes with a larger distance such as the [11, 1, 5] code.展开更多
Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that ...Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles.We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate.Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms,respectively,while ambient laboratory level noise is suppressed by DD.Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.展开更多
In cognitive radio systems,the design of spectrum sensing has to face the challenges of radio sensitivity and wide-band frequency agility. It is difficult for a single cognitive user to achieve timely and accurate wid...In cognitive radio systems,the design of spectrum sensing has to face the challenges of radio sensitivity and wide-band frequency agility. It is difficult for a single cognitive user to achieve timely and accurate wide-band spectrum sensing because of hardware limitations. However,cooperation among cognitive users may provide a way to do so. In this paper,we consider such a cooperative wide-band spectrum sensing problem with each of the cognitive users able to imperfectly sense only a small portion of spectrum at a time. The goal is to maximize the average throughput of the cognitive network,given the primary network's collision probability thresholds in each spectrum sub-band. The solution answers the essential questions:to what extent should each cognitive user cooperate with others and which part of the spectrum should the user choose to sense? An exhaustive search is used to find the optimal solution and a heuristic cooperative sensing algorithm is proposed to simplify the computational com-plexity. Inspired by this optimization problem,two practical cooperative sensing strategies are then presented for the centralized and distributed cognitive network respectively. Simulation results are given to demonstrate the promising performance of our proposed algorithm and strategies.展开更多
Let l=[0,1] and ω<sub>0</sub> be the first limit ordinal number. Assume that f:l→l is continuous, piece-wise monotone and the set of periods of f is {2<sup>i</sup>: i∈{0}∪N}. It is known th...Let l=[0,1] and ω<sub>0</sub> be the first limit ordinal number. Assume that f:l→l is continuous, piece-wise monotone and the set of periods of f is {2<sup>i</sup>: i∈{0}∪N}. It is known that the order of (l, f) is ω<sub>0</sub> or ω<sub>0</sub> + 1. It is shown that the order of the inverse limit space (l, f) is ω<sub>0</sub> (resp. ω<sub>0</sub> + 1) if and only if f is not (resp. is) chaotic in the sense of Li-Yorke.展开更多
基金National Key Research and Development Program of China(Grant No.2020YFB2009702)National Natural Science Foundation of China(Grant Nos.52075055,U21A20124 and 52111530069)Chongqing Natural Science Foundation of China(Grant No.cstc2020jcyj-msxmX0780)。
文摘In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are integrated into the electronic controller only from the pump level,leading to the potential instability of the overall system.To solve this problem,a multi-mode electrohydraulic load sensing(MELS)control scheme is proposed especially considering the switching stability from the system level,which includes four working modes of flow control,load sensing,power limitation,and pressure control.Depending on the actual working requirements,the switching rules for the different modes and the switching direction(i.e.,the modes can be switched bilaterally or unilaterally)are defined.The priority of different modes is also defined,from high to low:pressure control,power limitation,load sensing,and flow control.When multiple switching rules are satisfied at the same time,the system switches to the control mode with the highest priority.In addition,the switching stability between flow control and pressure control modes is analyzed,and the controller parameters that guarantee the switching stability are obtained.A comparative study is carried out based on a test rig with a 2-ton hydraulic excavator.The results show that the MELS controller can achieve the control functions of proper flow supplement,power limitation,and pressure cut-off,which has good stability performance when switching between different control modes.This research proposes the MELS control method that realizes the stability of multi-mode switching of the hydraulic system of mobile machinery under different working conditions.
文摘New advances within the recently rediscovered field of Compressed Sensing (CS) have opened for a great variety of new possibilities in the field of image reconstruction and more specifically in medical image reconstruction. In this work, a new approach using a CS-based algorithm is proposed and used in order to solve limited-angle problems (LAPs), like the ones that typically occur in computed tomography or electron microscope. This approach is based on a variant of the Robbins-Monro stochastic approximation procedure, developed by Egaziarian, using regularization by a spatially adaptive filter. This proposal consists on filling the gaps of missing or unobserved data with random noise and enabling a spatially adaptive denoising filter to regularize the data and reveal the underlying topology. This method was tested on different 3D transmission electron microscope datasets that presented different missing data artifacts (e.g, wedge or cone shape). The test results show a great potential for solving LAPs using the proposed technique.
文摘With the rapid advancements in edge computing and artificial intelligence,federated learning(FL)has gained momentum as a promising approach to collaborative data utilization across organizations and devices,while ensuring data privacy and information security.In order to further harness the energy efficiency of wireless networks,an integrated sensing,communication and computation(ISCC)framework has been proposed,which is anticipated to be a key enabler in the era of 6G networks.Although the advantages of pushing intelligence to edge devices are multi-fold,some challenges arise when incorporating FL into wireless networks under the umbrella of ISCC.This paper provides a comprehensive survey of FL,with special emphasis on the design and optimization of ISCC.We commence by introducing the background and fundamentals of FL and the ISCC framework.Subsequently,the aforementioned challenges are highlighted and the state of the art in potential solutions is reviewed.Finally,design guidelines are provided for the incorporation of FL and ISCC.Overall,this paper aims to contribute to the understanding of FL in the context of wireless networks,with a focus on the ISCC framework,and provide insights into addressing the challenges and optimizing the design for the integration of FL into future 6G networks.
文摘Error correction has long been suggested to extend the sensitivity of quantum sensors into the Heisenberg Limit. However, operations on logical qubits are only performed through universal gate sets consisting of finite-sized gates such as Clifford + T. Although these logical gate sets allow for universal quantum computation, the finite gate sizes present a problem for quantum sensing, since in sensing protocols, such as the Ramsey measurement protocol, the signal must act continuously. The difficulty in constructing a continuous logical op-erator comes from the Eastin-Knill theorem, which prevents a continuous sig-nal from being both fault-tolerant to local errors and transverse. Since error correction is needed to approach the Heisenberg Limit in a noisy environment, it is important to explore how to construct fault-tolerant continuous operators. In this paper, a protocol to design continuous logical z-rotations is proposed and applied to the Steane Code. The fault tolerance of the designed operator is investigated using the Knill-Laflamme conditions. The Knill-Laflamme condi-tions indicate that the diagonal unitary operator constructed cannot be fault tolerant solely due to the possibilities of X errors on the middle qubit. The ap-proach demonstrated throughout this paper may, however, find success in codes with more qubits such as the Shor code, distance 3 surface code, [15, 1, 3] code, or codes with a larger distance such as the [11, 1, 5] code.
基金Project supported by the NSAF(Grant No.U1930201)the National Natural Science Foundation of China(Grant Nos.12274331,91836101,and 91836302)+1 种基金the National Key R&D Program of China(Grant No.2018YFA0306504)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302100).
文摘Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles.We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate.Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms,respectively,while ambient laboratory level noise is suppressed by DD.Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.
基金supported in part by the National Basic Research Program (973) of China (No. 2009CB320405)the National Natural Science Foundation of China (No. 60972057)the National High-Tech Research and Development Program (863) of China (No. 2007AA 01Z257)
文摘In cognitive radio systems,the design of spectrum sensing has to face the challenges of radio sensitivity and wide-band frequency agility. It is difficult for a single cognitive user to achieve timely and accurate wide-band spectrum sensing because of hardware limitations. However,cooperation among cognitive users may provide a way to do so. In this paper,we consider such a cooperative wide-band spectrum sensing problem with each of the cognitive users able to imperfectly sense only a small portion of spectrum at a time. The goal is to maximize the average throughput of the cognitive network,given the primary network's collision probability thresholds in each spectrum sub-band. The solution answers the essential questions:to what extent should each cognitive user cooperate with others and which part of the spectrum should the user choose to sense? An exhaustive search is used to find the optimal solution and a heuristic cooperative sensing algorithm is proposed to simplify the computational com-plexity. Inspired by this optimization problem,two practical cooperative sensing strategies are then presented for the centralized and distributed cognitive network respectively. Simulation results are given to demonstrate the promising performance of our proposed algorithm and strategies.
文摘Let l=[0,1] and ω<sub>0</sub> be the first limit ordinal number. Assume that f:l→l is continuous, piece-wise monotone and the set of periods of f is {2<sup>i</sup>: i∈{0}∪N}. It is known that the order of (l, f) is ω<sub>0</sub> or ω<sub>0</sub> + 1. It is shown that the order of the inverse limit space (l, f) is ω<sub>0</sub> (resp. ω<sub>0</sub> + 1) if and only if f is not (resp. is) chaotic in the sense of Li-Yorke.