This paper presents a novel cooperative value iteration(VI)-based adaptive dynamic programming method for multi-player differential game models with a convergence proof.The players are divided into two groups in the l...This paper presents a novel cooperative value iteration(VI)-based adaptive dynamic programming method for multi-player differential game models with a convergence proof.The players are divided into two groups in the learning process and adapt their policies sequentially.Our method removes the dependence of admissible initial policies,which is one of the main drawbacks of the PI-based frameworks.Furthermore,this algorithm enables the players to adapt their control policies without full knowledge of others’ system parameters or control laws.The efficacy of our method is illustrated by three examples.展开更多
The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied....The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.展开更多
AI researchers typically formulated probabilistic planning under uncertainty problems using Markov Decision Processes (MDPs).Value Iteration is an inef?cient algorithm for MDPs, because it puts the majority of its eff...AI researchers typically formulated probabilistic planning under uncertainty problems using Markov Decision Processes (MDPs).Value Iteration is an inef?cient algorithm for MDPs, because it puts the majority of its effort into backing up the entire state space, which turns out to be unnecessary in many cases. In order to overcome this problem, many approaches have been proposed. Among them, LAO*, LRTDP and HDP are state-of-the-art ones. All of these use reach ability analysis and heuristics to avoid some unnecessary backups. However, none of these approaches fully exploit the graphical features of the MDPs or use these features to yield the best backup sequence of the state space. We introduce an improved algorithm named Topological Order Value Iteration (TOVI) that can circumvent the problem of unnecessary backups by detecting the structure of MDPs and backing up states based on topological sequences. The experimental results demonstrate the effectiveness and excellent performance of our algorithm.展开更多
Databases for machine learning and data mining often have missing values. How to develop effective method for missing values imputation is a crucial important problem in the field of machine learning and data mining. ...Databases for machine learning and data mining often have missing values. How to develop effective method for missing values imputation is a crucial important problem in the field of machine learning and data mining. In this paper, several methods for dealing with missing values in incomplete data are reviewed, and a new method for missing values imputation based on iterative learning is proposed. The proposed method is based on a basic assumption: There exist cause-effect connections among condition attribute values, and the missing values can be induced from known values. In the process of missing values imputation, a part of missing values are filled in at first and converted to known values, which are used for the next step of missing values imputation. The iterative learning process will go on until an incomplete data is entirely converted to a complete data. The paper also presents an example to illustrate the framework of iterative learning for missing values imputation.展开更多
Selecting a proper initial input for Iterative Learning Control (ILC) algorithms has been shown to offer faster learning speed compared to the same theories if a system starts from blind. Iterative Learning Control is...Selecting a proper initial input for Iterative Learning Control (ILC) algorithms has been shown to offer faster learning speed compared to the same theories if a system starts from blind. Iterative Learning Control is a control technique that uses previous successive projections to update the following execution/trial input such that a reference is followed to a high precision. In ILC, convergence of the error is generally highly dependent on the initial choice of input applied to the plant, thus a good choice of initial start would make learning faster and as a consequence the error tends to zero faster as well. Here in this paper, an upper limit to the initial choice construction for the input signal for trial 1 is set such that the system would not tend to respond aggressively due to the uncertainty that lies in high frequencies. The provided limit is found in term of singular values and simulation results obtained illustrate the theory behind.展开更多
In this paper,the existence and uniqueness of iterative solutions to the boundary value problems for a class of first order impulsive integro-differential equations were studied. Under a new concept of upper and lower...In this paper,the existence and uniqueness of iterative solutions to the boundary value problems for a class of first order impulsive integro-differential equations were studied. Under a new concept of upper and lower solutions, a new monotone iterative technique on the boundary value problem of integro-differential equations was proposed. The existence and uniqueness of iterative solutions and the error estimation in certain interval were obtained.An example was also given to illustrate the results.展开更多
An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for...An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for the generalized set-valued strongly nonlinear mixed variational-like inequalities are proved, a novel and innovative three-step iterative algorithm to compute approximate solution is constructed, and the existence of the solution of the generalized set-valued strongly nonlinear mixed variational-like inequality is shown using the auxiliary principle iterative sequences generated by the algorithm technique. The convergence of three-step is also proved.展开更多
In this paper, we apply the iterative technology to establish the existence of solutions for a fractional boundary value problem with q-difference. Explicit iterative sequences are given to approxinate the solutions a...In this paper, we apply the iterative technology to establish the existence of solutions for a fractional boundary value problem with q-difference. Explicit iterative sequences are given to approxinate the solutions and the error estimations are also given.展开更多
A new concept of generalized set-valued strongly accretive mappings in Banach spaces was given and some strong convergence theorems of Ishikawa and Mann iterative process with errors approximation methods by Huang et ...A new concept of generalized set-valued strongly accretive mappings in Banach spaces was given and some strong convergence theorems of Ishikawa and Mann iterative process with errors approximation methods by Huang et al. was proved. The results presented in this paper improve and extend the earlier results obtained by Huang et al.展开更多
A new conception of generalized set-valued Ф-hemi-contractive mapping in Banach spaces is presented. Some strong convergence theorems of Ishikawa and Mann iterative approximation with errors is proved. The results in...A new conception of generalized set-valued Ф-hemi-contractive mapping in Banach spaces is presented. Some strong convergence theorems of Ishikawa and Mann iterative approximation with errors is proved. The results in this paper improve and extend the earlier results.展开更多
This paper is concerned with the existence and approximation of solutions for a class of first order impulsive functional differential equations with periodic boundary value conditions. A new comparison result is pres...This paper is concerned with the existence and approximation of solutions for a class of first order impulsive functional differential equations with periodic boundary value conditions. A new comparison result is presented and the previous results are extended.展开更多
Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish...Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish our results. Results and Conclusion The results of the existence of maximal and minimal solutions of the periodic boundary value problem for functional differential equations with impulses are obtained.展开更多
The correlation between the initial time value of transient iterative parameters and the blowing pressure in the numerical simulation process of blowing balloon is investigated by POLYFLOW. The results show that: 1) A...The correlation between the initial time value of transient iterative parameters and the blowing pressure in the numerical simulation process of blowing balloon is investigated by POLYFLOW. The results show that: 1) As the blow molding pressure increases, the boundary value of the iterative time step decreases rapidly at first and then slowly. At the end of the first step of iterative calculation for each boundary value, the balloon parison is in the mold core cavity. 2) If the initial time value of transient iterative parameters is smaller than the boundary value of the iterative time step, the balloon parison is still in the mold core cavity at the end of the first iteration. However, if the iterative calculation continues, the calculation process may be interrupted when the time step is smaller than the initial time value of the transient iterative parameters, which makes the blow molding simulation of balloon unable to continue. 3) It is suggested that the initial time value of transient iterative parameters is one order of magnitude smaller than the boundary value of the iterative time step to complete smoothly the simulation of blow molding balloon.展开更多
The exploitation of rocket guidance technology on the basis of the guidance law of Space Shuttle and Pegasus rocket was performed. A new efficient method of numerical iteration solution to the boundary value problem w...The exploitation of rocket guidance technology on the basis of the guidance law of Space Shuttle and Pegasus rocket was performed. A new efficient method of numerical iteration solution to the boundary value problem was put forward. The numerical simulation results have shown that the method features good performances of stability, robustness, high precision, and algebraic formulas in real computation. By virtue of modern DSP (digital signal processor ) high speed chip technology, the algorithm can be used in real time and can adaot to the requirements of the big primary bias of rocket guidance.展开更多
In this paper, the properties of solution of periodic boundary value problem for second-order impulsive integro-differential equation are discussed. Using the iterative analysis method, the existence and uniqueness of...In this paper, the properties of solution of periodic boundary value problem for second-order impulsive integro-differential equation are discussed. Using the iterative analysis method, the existence and uniqueness of periodic solution and the sufficient condition for uniform stability of trivial solution are obtained, which extend the previous results on integro-differential equation in periodic boundary value problem.展开更多
In this paper, we extend variational iteration method (VIM) to find approximate solutions of linear and nonlinear thirteenth order differential equations in boundary value problems. The method is based on boundary val...In this paper, we extend variational iteration method (VIM) to find approximate solutions of linear and nonlinear thirteenth order differential equations in boundary value problems. The method is based on boundary valued problems. Two numerical examples are presented for the numerical illustration of the method and their results are compared with those considered by [1,2]. The results reveal that VIM is very effective and highly promising in comparison with other numerical methods.展开更多
This paper deals with the existence of positive solutions for the singular fourth order boundary value problem.A necessary and sufficient condition for the existence of C3 positive solution is given by means of the mo...This paper deals with the existence of positive solutions for the singular fourth order boundary value problem.A necessary and sufficient condition for the existence of C3 positive solution is given by means of the monotone iterative technique.Furthermore,the uniqueness of the C3 positive solution,and the iterative sequence of the C3 positive solution are also obtained.展开更多
Fixed point theory is one of the most important subjects in the setting of metric spaces since fixed point theorems can be used to determine the existence and the uniqueness of solutions of such mathematical problems....Fixed point theory is one of the most important subjects in the setting of metric spaces since fixed point theorems can be used to determine the existence and the uniqueness of solutions of such mathematical problems.It is known that many problems in applied sciences and engineering can be formulated as functional equations.Such equations can be transferred to fixed point theorems in an easy manner.Moreover,we use the fixed point theory to prove the existence and uniqueness of solutions of such integral and differential equations.Let X be a non-empty set.A fixed point for a self-mapping T on X is a point𝑒𝑒∈𝑋𝑋that satisfying T e=e.One of the most challenging problems in mathematics is to construct some iterations to faster the calculation or approximation of the fixed point of such problems.Some mathematicians constructed and generated some new iteration schemes to calculate or approximate the fixed point of such problems such as Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Berinde(2004b);Agarwal,O’Regan and Sahu(2007)].The main purpose of the present paper is to introduce and construct a new iteration scheme to calculate or approximate the fixed point within a fewer number of steps as much as we can.We prove that our iteration scheme is faster than the iteration schemes given by Sintunavarat et al.[Sintunavarat and Pitea(2016);Agarwal,O’Regan and Sahu(2007);Mann(1953);Ishikawa(1974)].We give some numerical examples by using MATLAB to compare the efficiency and effectiveness of our iterations scheme with the efficiency of Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Abbas and Nazir(2014);Agarwal,O’Regan and Sahu(2007)]schemes.Moreover,we introduce a problem raised from Newton’s law of cooling as an application of our new iteration scheme.Also,we support our application with a numerical example and figures to illustrate the validity of our iterative scheme.展开更多
基金supported by the Industry-University-Research Cooperation Fund Project of the Eighth Research Institute of China Aerospace Science and Technology Corporation (USCAST2022-11)Aeronautical Science Foundation of China (20220001057001)。
文摘This paper presents a novel cooperative value iteration(VI)-based adaptive dynamic programming method for multi-player differential game models with a convergence proof.The players are divided into two groups in the learning process and adapt their policies sequentially.Our method removes the dependence of admissible initial policies,which is one of the main drawbacks of the PI-based frameworks.Furthermore,this algorithm enables the players to adapt their control policies without full knowledge of others’ system parameters or control laws.The efficacy of our method is illustrated by three examples.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y605144)the XNF of Zhejiang University of Media and Communications (XN080012008034)
文摘The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.
文摘AI researchers typically formulated probabilistic planning under uncertainty problems using Markov Decision Processes (MDPs).Value Iteration is an inef?cient algorithm for MDPs, because it puts the majority of its effort into backing up the entire state space, which turns out to be unnecessary in many cases. In order to overcome this problem, many approaches have been proposed. Among them, LAO*, LRTDP and HDP are state-of-the-art ones. All of these use reach ability analysis and heuristics to avoid some unnecessary backups. However, none of these approaches fully exploit the graphical features of the MDPs or use these features to yield the best backup sequence of the state space. We introduce an improved algorithm named Topological Order Value Iteration (TOVI) that can circumvent the problem of unnecessary backups by detecting the structure of MDPs and backing up states based on topological sequences. The experimental results demonstrate the effectiveness and excellent performance of our algorithm.
文摘Databases for machine learning and data mining often have missing values. How to develop effective method for missing values imputation is a crucial important problem in the field of machine learning and data mining. In this paper, several methods for dealing with missing values in incomplete data are reviewed, and a new method for missing values imputation based on iterative learning is proposed. The proposed method is based on a basic assumption: There exist cause-effect connections among condition attribute values, and the missing values can be induced from known values. In the process of missing values imputation, a part of missing values are filled in at first and converted to known values, which are used for the next step of missing values imputation. The iterative learning process will go on until an incomplete data is entirely converted to a complete data. The paper also presents an example to illustrate the framework of iterative learning for missing values imputation.
文摘Selecting a proper initial input for Iterative Learning Control (ILC) algorithms has been shown to offer faster learning speed compared to the same theories if a system starts from blind. Iterative Learning Control is a control technique that uses previous successive projections to update the following execution/trial input such that a reference is followed to a high precision. In ILC, convergence of the error is generally highly dependent on the initial choice of input applied to the plant, thus a good choice of initial start would make learning faster and as a consequence the error tends to zero faster as well. Here in this paper, an upper limit to the initial choice construction for the input signal for trial 1 is set such that the system would not tend to respond aggressively due to the uncertainty that lies in high frequencies. The provided limit is found in term of singular values and simulation results obtained illustrate the theory behind.
基金National Natural Science Foundation of China(No.11271372)Hunan Provincial National Natural Science Foundation of China(No.12JJ2004)Central South University Graduate Innovation Project,China(No.2014zzts136)
文摘In this paper,the existence and uniqueness of iterative solutions to the boundary value problems for a class of first order impulsive integro-differential equations were studied. Under a new concept of upper and lower solutions, a new monotone iterative technique on the boundary value problem of integro-differential equations was proposed. The existence and uniqueness of iterative solutions and the error estimation in certain interval were obtained.An example was also given to illustrate the results.
基金Project supported by the National Natural Science Foundation of China (No.10472061)
文摘An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for the generalized set-valued strongly nonlinear mixed variational-like inequalities are proved, a novel and innovative three-step iterative algorithm to compute approximate solution is constructed, and the existence of the solution of the generalized set-valued strongly nonlinear mixed variational-like inequality is shown using the auxiliary principle iterative sequences generated by the algorithm technique. The convergence of three-step is also proved.
文摘In this paper, we apply the iterative technology to establish the existence of solutions for a fractional boundary value problem with q-difference. Explicit iterative sequences are given to approxinate the solutions and the error estimations are also given.
基金The foundation project of Chengdu University of Information Technology (No.CRF200502)
文摘A new concept of generalized set-valued strongly accretive mappings in Banach spaces was given and some strong convergence theorems of Ishikawa and Mann iterative process with errors approximation methods by Huang et al. was proved. The results presented in this paper improve and extend the earlier results obtained by Huang et al.
文摘A new conception of generalized set-valued Ф-hemi-contractive mapping in Banach spaces is presented. Some strong convergence theorems of Ishikawa and Mann iterative approximation with errors is proved. The results in this paper improve and extend the earlier results.
基金Supported by the National Natural Science Foundation of China (10571050 10871062)Hunan Provincial Innovation Foundation For Postgraduate
文摘This paper is concerned with the existence and approximation of solutions for a class of first order impulsive functional differential equations with periodic boundary value conditions. A new comparison result is presented and the previous results are extended.
文摘Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish our results. Results and Conclusion The results of the existence of maximal and minimal solutions of the periodic boundary value problem for functional differential equations with impulses are obtained.
文摘The correlation between the initial time value of transient iterative parameters and the blowing pressure in the numerical simulation process of blowing balloon is investigated by POLYFLOW. The results show that: 1) As the blow molding pressure increases, the boundary value of the iterative time step decreases rapidly at first and then slowly. At the end of the first step of iterative calculation for each boundary value, the balloon parison is in the mold core cavity. 2) If the initial time value of transient iterative parameters is smaller than the boundary value of the iterative time step, the balloon parison is still in the mold core cavity at the end of the first iteration. However, if the iterative calculation continues, the calculation process may be interrupted when the time step is smaller than the initial time value of the transient iterative parameters, which makes the blow molding simulation of balloon unable to continue. 3) It is suggested that the initial time value of transient iterative parameters is one order of magnitude smaller than the boundary value of the iterative time step to complete smoothly the simulation of blow molding balloon.
文摘The exploitation of rocket guidance technology on the basis of the guidance law of Space Shuttle and Pegasus rocket was performed. A new efficient method of numerical iteration solution to the boundary value problem was put forward. The numerical simulation results have shown that the method features good performances of stability, robustness, high precision, and algebraic formulas in real computation. By virtue of modern DSP (digital signal processor ) high speed chip technology, the algorithm can be used in real time and can adaot to the requirements of the big primary bias of rocket guidance.
基金Supported by the Natural Science Foundation of Hainan Province(112006) Supported by the Natural Science Foundation of Department of Education of Hainan Province(Hjkj2013-47) Supported by the National Basic Research Program of China(973Program, 2011CB710600)
文摘In this paper, the properties of solution of periodic boundary value problem for second-order impulsive integro-differential equation are discussed. Using the iterative analysis method, the existence and uniqueness of periodic solution and the sufficient condition for uniform stability of trivial solution are obtained, which extend the previous results on integro-differential equation in periodic boundary value problem.
文摘In this paper, we extend variational iteration method (VIM) to find approximate solutions of linear and nonlinear thirteenth order differential equations in boundary value problems. The method is based on boundary valued problems. Two numerical examples are presented for the numerical illustration of the method and their results are compared with those considered by [1,2]. The results reveal that VIM is very effective and highly promising in comparison with other numerical methods.
文摘This paper deals with the existence of positive solutions for the singular fourth order boundary value problem.A necessary and sufficient condition for the existence of C3 positive solution is given by means of the monotone iterative technique.Furthermore,the uniqueness of the C3 positive solution,and the iterative sequence of the C3 positive solution are also obtained.
文摘Fixed point theory is one of the most important subjects in the setting of metric spaces since fixed point theorems can be used to determine the existence and the uniqueness of solutions of such mathematical problems.It is known that many problems in applied sciences and engineering can be formulated as functional equations.Such equations can be transferred to fixed point theorems in an easy manner.Moreover,we use the fixed point theory to prove the existence and uniqueness of solutions of such integral and differential equations.Let X be a non-empty set.A fixed point for a self-mapping T on X is a point𝑒𝑒∈𝑋𝑋that satisfying T e=e.One of the most challenging problems in mathematics is to construct some iterations to faster the calculation or approximation of the fixed point of such problems.Some mathematicians constructed and generated some new iteration schemes to calculate or approximate the fixed point of such problems such as Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Berinde(2004b);Agarwal,O’Regan and Sahu(2007)].The main purpose of the present paper is to introduce and construct a new iteration scheme to calculate or approximate the fixed point within a fewer number of steps as much as we can.We prove that our iteration scheme is faster than the iteration schemes given by Sintunavarat et al.[Sintunavarat and Pitea(2016);Agarwal,O’Regan and Sahu(2007);Mann(1953);Ishikawa(1974)].We give some numerical examples by using MATLAB to compare the efficiency and effectiveness of our iterations scheme with the efficiency of Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Abbas and Nazir(2014);Agarwal,O’Regan and Sahu(2007)]schemes.Moreover,we introduce a problem raised from Newton’s law of cooling as an application of our new iteration scheme.Also,we support our application with a numerical example and figures to illustrate the validity of our iterative scheme.