In his series of three papers we study singularly perturbed (SP) boundary valueproblems for equations of elliptic and parabolic type. For small values of the pertur-bation parameter parabolic boundary and interior lay...In his series of three papers we study singularly perturbed (SP) boundary valueproblems for equations of elliptic and parabolic type. For small values of the pertur-bation parameter parabolic boundary and interior layers appear in these problems.If classical discretisation methods are used, the solution of the finite differencescheme and the approximation of the diffusive flux do not converge uniformly withrespect to this parameter. Using the method of special, adapted grids, we canconstruct difference schemes that allow approximation of the solution and the nor-malised diffusive flux uniformly with respect to the small parameter.We also consider sillgularly perturbed boundary value problems for convection-diffusion equations. Also for these problems we construct special finite differenceschemes, the solution of which converges ε-uniformly We study what problems ap-pear, when classical schemes are used for the approximation of the spatial deriva-tives. We compare the results with those obtained by the adapted approach. Re-sults of numerical experiments are discussed.In the three papers we first give an introduction on the general problem, andthen we consider respectively (i) Problems for SP parabolic equations, for whichthe solution and the normalised diffusive fluxes are required; (ii) Problems for SPelliptic equations with boundary conditions of Diriclilet, Neumann and RDbin type;(iii) Problems for SP parabolic equation with discontinuous boundary conditions-展开更多
In this series of three papers we study singularly perturbed (SP) boundaryvalue problems for equations of eiliptic and parabolic type- For small values ofthe perturbation parameter parabolic boundary and interior laye...In this series of three papers we study singularly perturbed (SP) boundaryvalue problems for equations of eiliptic and parabolic type- For small values ofthe perturbation parameter parabolic boundary and interior layers appear in theseproblems. If classical discretisation methods are used, the solution of the finitedifference scheme and the approximation of the diffusive flux do not converge uniformly with respect to this parameter. Using the method of special, edapted grids,we can construct difference schemes that allow apprcximation of the solution andthe normalised diffusive flux uniformly with respect to the small parameter.We also consider singularly perturbed boundary value problems for convection-diffusion equations. Also for these problems we construct special finite differenceschemes, the solution of which converges ε-uniformly. We study what problems appear, when classical schemes are used for the approximation of the spatial derivatives. We compare the results with those obtained by the adapted approach. Re-sults of numerical experiments are discussed.In the three papers we first give an introduction on the general problem, andthen we consider respectively (i) Problems for SP parabolic equations, for whichthe solution and the normalised diffusive fluxes are required; (ii) Problems for SPelliptic equations with boundary conditions of Dirichlet, Neumann and Robin type;(iii) Problems for SP parabolic equation with discontinuous boundary conditions.展开更多
In this series of three papers we study singularly perturbed (SP) boundary vaue problems for equations of elliptic and parabolic troe. For small values of the perturbation parameter parabolic boundary and interior lay...In this series of three papers we study singularly perturbed (SP) boundary vaue problems for equations of elliptic and parabolic troe. For small values of the perturbation parameter parabolic boundary and interior layers appear in these problems. If classical discretisation methods are used, the solution of the finite difference scheme and the approximation of the diffusive flux do not converge uniformly with respect to this parameter. Using the method of special, adapted grids,we can construct difference schemes that allow approkimation of the solution and the normalised diffusive flux uniformly with respect to the small parameter.We also consider singularly perturbed boundary value problems for convection diffusion equations. Also for these problems we construct special finite difference schemes, the solution of which converges E-uniformly We study what problems appear, when classical schemes are used for the approximation of the spatial deriva tives. We compare the results with those obtained by the adapted approach. Results of numerical experiments are discussed.In the three papers we first give an introduction on the general problem, and then we consider respectively (i) Problems for SP parabolic equations, for which the solution and the normalised diffusive fluxes are required; (ii) Problems for SP elliptic equations with boundary conditions of Dirichlet, Neumann and Robin type;(iii) Problems for SP parabolic eqllation with discontinuous boundaxy conditions展开更多
文摘In his series of three papers we study singularly perturbed (SP) boundary valueproblems for equations of elliptic and parabolic type. For small values of the pertur-bation parameter parabolic boundary and interior layers appear in these problems.If classical discretisation methods are used, the solution of the finite differencescheme and the approximation of the diffusive flux do not converge uniformly withrespect to this parameter. Using the method of special, adapted grids, we canconstruct difference schemes that allow approximation of the solution and the nor-malised diffusive flux uniformly with respect to the small parameter.We also consider sillgularly perturbed boundary value problems for convection-diffusion equations. Also for these problems we construct special finite differenceschemes, the solution of which converges ε-uniformly We study what problems ap-pear, when classical schemes are used for the approximation of the spatial deriva-tives. We compare the results with those obtained by the adapted approach. Re-sults of numerical experiments are discussed.In the three papers we first give an introduction on the general problem, andthen we consider respectively (i) Problems for SP parabolic equations, for whichthe solution and the normalised diffusive fluxes are required; (ii) Problems for SPelliptic equations with boundary conditions of Diriclilet, Neumann and RDbin type;(iii) Problems for SP parabolic equation with discontinuous boundary conditions-
文摘In this series of three papers we study singularly perturbed (SP) boundaryvalue problems for equations of eiliptic and parabolic type- For small values ofthe perturbation parameter parabolic boundary and interior layers appear in theseproblems. If classical discretisation methods are used, the solution of the finitedifference scheme and the approximation of the diffusive flux do not converge uniformly with respect to this parameter. Using the method of special, edapted grids,we can construct difference schemes that allow apprcximation of the solution andthe normalised diffusive flux uniformly with respect to the small parameter.We also consider singularly perturbed boundary value problems for convection-diffusion equations. Also for these problems we construct special finite differenceschemes, the solution of which converges ε-uniformly. We study what problems appear, when classical schemes are used for the approximation of the spatial derivatives. We compare the results with those obtained by the adapted approach. Re-sults of numerical experiments are discussed.In the three papers we first give an introduction on the general problem, andthen we consider respectively (i) Problems for SP parabolic equations, for whichthe solution and the normalised diffusive fluxes are required; (ii) Problems for SPelliptic equations with boundary conditions of Dirichlet, Neumann and Robin type;(iii) Problems for SP parabolic equation with discontinuous boundary conditions.
文摘In this series of three papers we study singularly perturbed (SP) boundary vaue problems for equations of elliptic and parabolic troe. For small values of the perturbation parameter parabolic boundary and interior layers appear in these problems. If classical discretisation methods are used, the solution of the finite difference scheme and the approximation of the diffusive flux do not converge uniformly with respect to this parameter. Using the method of special, adapted grids,we can construct difference schemes that allow approkimation of the solution and the normalised diffusive flux uniformly with respect to the small parameter.We also consider singularly perturbed boundary value problems for convection diffusion equations. Also for these problems we construct special finite difference schemes, the solution of which converges E-uniformly We study what problems appear, when classical schemes are used for the approximation of the spatial deriva tives. We compare the results with those obtained by the adapted approach. Results of numerical experiments are discussed.In the three papers we first give an introduction on the general problem, and then we consider respectively (i) Problems for SP parabolic equations, for which the solution and the normalised diffusive fluxes are required; (ii) Problems for SP elliptic equations with boundary conditions of Dirichlet, Neumann and Robin type;(iii) Problems for SP parabolic eqllation with discontinuous boundaxy conditions