Volumetric efficiency and air charge estimation is one of the most demanding tasks in control of today's internal combustion engines.Specifically,using three-way catalytic converter involves strict control of the ...Volumetric efficiency and air charge estimation is one of the most demanding tasks in control of today's internal combustion engines.Specifically,using three-way catalytic converter involves strict control of the air/fuel ratio around the stoichiometric point and hence requires an accurate model for air charge estimation.However,high degrees of complexity and nonlinearity of the gas flow in the internal combustion engine make air charge estimation a challenging task.This is more obvious in engines with variable valve timing systems in which gas flow is more complex and depends on more functional variables.This results in models that are either quite empirical(such as look-up tables),not having interpretability and extrapolation capability,or physically based models which are not appropriate for onboard applications.Solving these problems,a novel semi-empirical model was proposed in this work which only needed engine speed,load,and valves timings for volumetric efficiency prediction.The accuracy and generalizability of the model is shown by its test on numerical and experimental data from three distinct engines.Normalized test errors are 0.0316,0.0152 and 0.24 for the three engines,respectively.Also the performance and complexity of the model were compared with neural networks as typical black box models.While the complexity of the model is less than half of the complexity of neural networks,and its computational cost is approximately 0.12 of that of neural networks and its prediction capability in the considered case studies is usually more.These results show the superiority of the proposed model over conventional black box models such as neural networks in terms of accuracy,generalizability and computational cost.展开更多
High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate a...High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.展开更多
Valvular heart disease is a pathologic process involving one or more of the four valves(aortic,pulmonary,mitral and tricuspid)of the heart typified by stenosis or regurgitation and leading to patient symptoms.The most...Valvular heart disease is a pathologic process involving one or more of the four valves(aortic,pulmonary,mitral and tricuspid)of the heart typified by stenosis or regurgitation and leading to patient symptoms.The most common causes are tissue degeneration,rheumatic fever and congenital heart diseases.Aortic valve replacement(AVR)using either mechanical or bioprosthetic(tissue)valves via open-heart surgical展开更多
<div style="text-align:justify;"> When the vibration of diesel engine structure is measured, the signal is composed of a very complex superposition of the contributions of different vibratory sources m...<div style="text-align:justify;"> When the vibration of diesel engine structure is measured, the signal is composed of a very complex superposition of the contributions of different vibratory sources modified by their respective transmission paths. These sources originate from several internal phenomenon in the engine such as combustion pressure variation, unbalanced reciprocating and rotating parts. In a diesel engine, movement parts work in a specific order. Once the starting point is determined, occurrence of work order in different cycle phases can be determined. This could successfully use to identifying of impulses in complex vibration signal of a diesel engine. From the variation of features of those impulses, it is possible to determine the working condition of the engine. This can use to fault diagnosis of diesel engine, specially faults related to combustion process. </div>展开更多
We propose a novel axis-symmetric modified hybrid permanent magnet(PM)/electromagnet(EM) magnetomotive force actuator for a variable valve timing camless engine. The design provides a large magnetic force with low ene...We propose a novel axis-symmetric modified hybrid permanent magnet(PM)/electromagnet(EM) magnetomotive force actuator for a variable valve timing camless engine. The design provides a large magnetic force with low energy consumption, low coil inductance, PM demagnetization isolation, and improved transient response. Simulation and experimental results confirm forces of about 200 N(in the presence of coil current) at the equilibrium position and 500 N(in the absence of coil current) at the armature seat. We compared our proposed design with a double solenoid valve actuator(DSVA). The finite element method(FEM) designs of the DSVA and our proposed valve actuator were validated by experiments performed on manufactured prototypes.展开更多
The application of hybrid vehicle is a practical technical solution to the energy shortage and the environmental pollution.The internal combustion engine(ICE)plays a key role in the development of the hybrid vehicle.B...The application of hybrid vehicle is a practical technical solution to the energy shortage and the environmental pollution.The internal combustion engine(ICE)plays a key role in the development of the hybrid vehicle.Based on the requirements of the hybrid vehicle and the characteristic of Atkinson cycle,a set of designing methods for the Atkinson cycle gasoline engine is presented through the analysis of the optimized matching for the compression ratio,valve timing and the combustion chamber.The designing method has been verified by the bench test and the results show that the fuel consumption can be improved by12%–15%with the reduction of the low speed torque by 10%,and the low fuel consumption region in the fuel map extends significantly with the rated power almost keeping constant.It may be of great reference for the development of hybrid vehicle technology in China.展开更多
This paper experimentally and numerically studied the effects of fuel combination and intake valve opening(IVO)timing on combustion and emissions of an n-heptane and gasoline dual-flicl homogeneous charge compression ...This paper experimentally and numerically studied the effects of fuel combination and intake valve opening(IVO)timing on combustion and emissions of an n-heptane and gasoline dual-flicl homogeneous charge compression ignition(HCCI)engine.By changing the gasoline fraction(GF)from 0」to 0.5 and the IVO timing from-15°CA ATDC to 35°CA ATDC,the in-cylinder pressure traces,heat release behaviors,and HC and CO emissions were investigated.The results showed that both the increased GF and the retarded IVO timing delay the combustion phasing,lengthen the combustion duration,and decrease the peak heat release rate and the maximum average combustion temperature,whereas the IVO timing has a more obvious influence on combustion than GF.HC and CO emissions are decreased with reduced GF,advanced IVO timing and increased operational load.展开更多
文摘Volumetric efficiency and air charge estimation is one of the most demanding tasks in control of today's internal combustion engines.Specifically,using three-way catalytic converter involves strict control of the air/fuel ratio around the stoichiometric point and hence requires an accurate model for air charge estimation.However,high degrees of complexity and nonlinearity of the gas flow in the internal combustion engine make air charge estimation a challenging task.This is more obvious in engines with variable valve timing systems in which gas flow is more complex and depends on more functional variables.This results in models that are either quite empirical(such as look-up tables),not having interpretability and extrapolation capability,or physically based models which are not appropriate for onboard applications.Solving these problems,a novel semi-empirical model was proposed in this work which only needed engine speed,load,and valves timings for volumetric efficiency prediction.The accuracy and generalizability of the model is shown by its test on numerical and experimental data from three distinct engines.Normalized test errors are 0.0316,0.0152 and 0.24 for the three engines,respectively.Also the performance and complexity of the model were compared with neural networks as typical black box models.While the complexity of the model is less than half of the complexity of neural networks,and its computational cost is approximately 0.12 of that of neural networks and its prediction capability in the considered case studies is usually more.These results show the superiority of the proposed model over conventional black box models such as neural networks in terms of accuracy,generalizability and computational cost.
文摘High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.
基金supported by the Department of Anesthesiology and Pain Medicine,University of California Davis Health
文摘Valvular heart disease is a pathologic process involving one or more of the four valves(aortic,pulmonary,mitral and tricuspid)of the heart typified by stenosis or regurgitation and leading to patient symptoms.The most common causes are tissue degeneration,rheumatic fever and congenital heart diseases.Aortic valve replacement(AVR)using either mechanical or bioprosthetic(tissue)valves via open-heart surgical
文摘<div style="text-align:justify;"> When the vibration of diesel engine structure is measured, the signal is composed of a very complex superposition of the contributions of different vibratory sources modified by their respective transmission paths. These sources originate from several internal phenomenon in the engine such as combustion pressure variation, unbalanced reciprocating and rotating parts. In a diesel engine, movement parts work in a specific order. Once the starting point is determined, occurrence of work order in different cycle phases can be determined. This could successfully use to identifying of impulses in complex vibration signal of a diesel engine. From the variation of features of those impulses, it is possible to determine the working condition of the engine. This can use to fault diagnosis of diesel engine, specially faults related to combustion process. </div>
基金supported by the State Key Laboratory of Automotive Safety and Energy,Tsinghua University(No.KF14112)the State Key Laboratory of Engines,Tianjin University(No.K2014-6)
文摘We propose a novel axis-symmetric modified hybrid permanent magnet(PM)/electromagnet(EM) magnetomotive force actuator for a variable valve timing camless engine. The design provides a large magnetic force with low energy consumption, low coil inductance, PM demagnetization isolation, and improved transient response. Simulation and experimental results confirm forces of about 200 N(in the presence of coil current) at the equilibrium position and 500 N(in the absence of coil current) at the armature seat. We compared our proposed design with a double solenoid valve actuator(DSVA). The finite element method(FEM) designs of the DSVA and our proposed valve actuator were validated by experiments performed on manufactured prototypes.
文摘The application of hybrid vehicle is a practical technical solution to the energy shortage and the environmental pollution.The internal combustion engine(ICE)plays a key role in the development of the hybrid vehicle.Based on the requirements of the hybrid vehicle and the characteristic of Atkinson cycle,a set of designing methods for the Atkinson cycle gasoline engine is presented through the analysis of the optimized matching for the compression ratio,valve timing and the combustion chamber.The designing method has been verified by the bench test and the results show that the fuel consumption can be improved by12%–15%with the reduction of the low speed torque by 10%,and the low fuel consumption region in the fuel map extends significantly with the rated power almost keeping constant.It may be of great reference for the development of hybrid vehicle technology in China.
基金the National Natural Science Foundation of China(Grant Nos.51861135303 and 51776124)the Shanghai Science and Technology Committee,China(Grant No.19160745400).
文摘This paper experimentally and numerically studied the effects of fuel combination and intake valve opening(IVO)timing on combustion and emissions of an n-heptane and gasoline dual-flicl homogeneous charge compression ignition(HCCI)engine.By changing the gasoline fraction(GF)from 0」to 0.5 and the IVO timing from-15°CA ATDC to 35°CA ATDC,the in-cylinder pressure traces,heat release behaviors,and HC and CO emissions were investigated.The results showed that both the increased GF and the retarded IVO timing delay the combustion phasing,lengthen the combustion duration,and decrease the peak heat release rate and the maximum average combustion temperature,whereas the IVO timing has a more obvious influence on combustion than GF.HC and CO emissions are decreased with reduced GF,advanced IVO timing and increased operational load.