Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the tr...Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the transient flow,it is necessary to establish a transient hydraulic-thermal simulation model in order to determine the venting time.In this paper,based on two kinds of venting scenarios in which there is only one venting point in the venting system of a gas trunk pipeline segment—namely,where the venting point is either at one of the two ends or at the junction of two gas trunk pipeline segments—transient hydraulic-thermal simulation models are established.The models consist of gas flow governing equations,the gas state equation,gas physical property equations,initial conditions,and appropriate boundary conditions.The implicit central difference method is used to discretize the gas flow partial differential equations,and the trust-region-dogleg algorithm is used to solve the equations corresponding to each time step,in order to dynamically simulate the whole venting process.The judgment condition for the end of the venting process is that the average pressure of gas trunk pipeline segment is less than 0.11 MPa(actual pressure).Comparing the simulation results of the proposed model with those of the OLGA software and real operational data,we find that the venting time error is less than 10%.On this basis,a venting valve opening control principle is proposed,which prevents the venting noise from exceeded the specified noise value(85 d B)in the venting design of domestic gas pipeline projects.The established calculation model for venting time(dynamic simulation model)for a gas trunk pipeline segment and the proposed opening control principle of venting valve provide reference for the optimal operation of gas pipeline venting systems.展开更多
This paper discusses the influence of valve operations on pressure surge in a pipeline. The valve is a protective type which remains open in a pipeline loading system during normal operation but shut down the system w...This paper discusses the influence of valve operations on pressure surge in a pipeline. The valve is a protective type which remains open in a pipeline loading system during normal operation but shut down the system when there is an emergency such as storm. The data for the study were obtained from measurements at Agbada 1 flow station as well as log sheets. Also, calculations were made using existing and derived formulas to obtain the values of Crude Oil and Pipe parameters that could not be measured directly or derived from data or log sheets. Surge analysis was carried out on the pipeline system to ascertain changes in pressure and flow rates along the pipeline following valve shut down at any time using developed pressure and flow equations. The results of the simulation analysis showed remarkable changes in the fluid pressure and flow rates along the pipe on shut down at any time. The pipeline recorded the highest pressure of 37.4 bar against initial pressure of 25 bar at length 6000 m in 1.5 second valve closure. There is also remarkable pressure drop along the pipe capable of reducing the crude oil pressure below its vapour pressure. The flow is turbulent even before valve operation with Reynolds number as high as 57024.53. The model equations compute changes in pressure and flow rates at different points in a pipeline installed with emergency-relief coupling valve. This enables point of extreme and low pressure to be detected accurately in a pipeline which guides the engineer while positioning surge suppression devices which cushion the effects of pressure surge in any pipeline.展开更多
This work provides a description of oil leak/spill processes from containment such as pipeline. Understanding of such processes is important in order to adequately estimate oil spills and to justify an appropriate eme...This work provides a description of oil leak/spill processes from containment such as pipeline. Understanding of such processes is important in order to adequately estimate oil spills and to justify an appropriate emergency action for minimizing spills. Internal diameters of pipes used in the study are within 4 inches. Leaks are simulated from plastic pipeline oil containment fitted with valves. The leak response with time when upstream and downstream valves are operated is studied. Within the internal diameters of pipelines considered in the tests, two ranges of leak characteristics are evident;the “holding range” and the “flowing range” characteristics. The consequences of these characteristics in the oil industry operations have been discussed. The work suggests a spill estimation method based on this knowledge. Furthermore, in order to minimise spill in event of pipeline failure, it is observed that the optimum action on pipeline operational valves, is the immediate closure of upstream valve, followed by the downstream valve, nearly simultaneously. Future work will extend the test to larger diameter pipelines to attempt developing a mathematical approach for estimating limits of the “holding range” characteristics of pipelines given appropriate parameters and in-field test.展开更多
基金supported by the National Natural Science Foundation of China (No. 51178141)National Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07408-002-004-002)
基金supported by the National Natural Science Foundation of China(Grant No.52174064)
文摘Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the transient flow,it is necessary to establish a transient hydraulic-thermal simulation model in order to determine the venting time.In this paper,based on two kinds of venting scenarios in which there is only one venting point in the venting system of a gas trunk pipeline segment—namely,where the venting point is either at one of the two ends or at the junction of two gas trunk pipeline segments—transient hydraulic-thermal simulation models are established.The models consist of gas flow governing equations,the gas state equation,gas physical property equations,initial conditions,and appropriate boundary conditions.The implicit central difference method is used to discretize the gas flow partial differential equations,and the trust-region-dogleg algorithm is used to solve the equations corresponding to each time step,in order to dynamically simulate the whole venting process.The judgment condition for the end of the venting process is that the average pressure of gas trunk pipeline segment is less than 0.11 MPa(actual pressure).Comparing the simulation results of the proposed model with those of the OLGA software and real operational data,we find that the venting time error is less than 10%.On this basis,a venting valve opening control principle is proposed,which prevents the venting noise from exceeded the specified noise value(85 d B)in the venting design of domestic gas pipeline projects.The established calculation model for venting time(dynamic simulation model)for a gas trunk pipeline segment and the proposed opening control principle of venting valve provide reference for the optimal operation of gas pipeline venting systems.
文摘This paper discusses the influence of valve operations on pressure surge in a pipeline. The valve is a protective type which remains open in a pipeline loading system during normal operation but shut down the system when there is an emergency such as storm. The data for the study were obtained from measurements at Agbada 1 flow station as well as log sheets. Also, calculations were made using existing and derived formulas to obtain the values of Crude Oil and Pipe parameters that could not be measured directly or derived from data or log sheets. Surge analysis was carried out on the pipeline system to ascertain changes in pressure and flow rates along the pipeline following valve shut down at any time using developed pressure and flow equations. The results of the simulation analysis showed remarkable changes in the fluid pressure and flow rates along the pipe on shut down at any time. The pipeline recorded the highest pressure of 37.4 bar against initial pressure of 25 bar at length 6000 m in 1.5 second valve closure. There is also remarkable pressure drop along the pipe capable of reducing the crude oil pressure below its vapour pressure. The flow is turbulent even before valve operation with Reynolds number as high as 57024.53. The model equations compute changes in pressure and flow rates at different points in a pipeline installed with emergency-relief coupling valve. This enables point of extreme and low pressure to be detected accurately in a pipeline which guides the engineer while positioning surge suppression devices which cushion the effects of pressure surge in any pipeline.
文摘This work provides a description of oil leak/spill processes from containment such as pipeline. Understanding of such processes is important in order to adequately estimate oil spills and to justify an appropriate emergency action for minimizing spills. Internal diameters of pipes used in the study are within 4 inches. Leaks are simulated from plastic pipeline oil containment fitted with valves. The leak response with time when upstream and downstream valves are operated is studied. Within the internal diameters of pipelines considered in the tests, two ranges of leak characteristics are evident;the “holding range” and the “flowing range” characteristics. The consequences of these characteristics in the oil industry operations have been discussed. The work suggests a spill estimation method based on this knowledge. Furthermore, in order to minimise spill in event of pipeline failure, it is observed that the optimum action on pipeline operational valves, is the immediate closure of upstream valve, followed by the downstream valve, nearly simultaneously. Future work will extend the test to larger diameter pipelines to attempt developing a mathematical approach for estimating limits of the “holding range” characteristics of pipelines given appropriate parameters and in-field test.