期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
Systematic engineering of BiVO_(4)photoanode for efficient photoelectrochemical water oxidation
1
作者 Zhiting Liang Meng Li +6 位作者 Kai‐Hang Ye Tongxin Tang Zhan Lin Yuying Zheng Yongchao Huang Hongbing Ji Shanqing Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期12-21,共10页
BiVO_(4)is one of the most promising photoanode materials for photoelectrochemical(PEC)solar energy conversion,but it still suffers from poor photocurrent density due to insufficient light‐harvesting efficiency(LHE),... BiVO_(4)is one of the most promising photoanode materials for photoelectrochemical(PEC)solar energy conversion,but it still suffers from poor photocurrent density due to insufficient light‐harvesting efficiency(LHE),weak photogenerated charge separation efficiency(Φ_(Sep)),and low water oxidation efficiency(Φ_(OX)).Herein,we tackle these challenges of the BiVO_(4)photoanodes using systematic engineering,including catalysis engineering,bandgap engineering,and morphology engineering.In particular,we deposit a NiCoO_(x)layer onto the BiVO_(4)photoanode as the oxygen evolution catalyst to enhance theΦ_(OX)of Fe‐g‐C_(3)N_(4)/BiVO_(4)for PEC water oxidation,and incorporate Fe‐doped graphite‐phase C_(3)N_(4)(Fe‐g‐C_(3)N_(4))into the BiVO_(4)photoanode to optimize the bandgap and surface areas to subsequently expand the light absorption range of the photoanode from 530 to 690 nm,increase the LHE andΦ_(Sep),and further improve the oxygen evolution reaction activity of the NiCoO_(x)catalytic layer.Consequently,the maximum photocurrent density of the as‐prepared NiCoO_(x)/Fe‐g‐C_(3)N_(4)/BiVO_(4)is remarkably boosted from 4.6 to 7.4 mA cm^(−2).This work suggests that the proposed systematic engineering strategy is exceptionally promising for improving LHE,Φ_(Sep),andΦ_(OX)of BiVO_(4)‐based photoanodes,which will substantially benefit the design,preparation,and large‐scale application of next‐generation high‐performance photoanodes. 展开更多
关键词 bismuth vanadate carbon nitride charge separation HETEROJUNCTION water oxidation
下载PDF
Tailoring NH_(4)^(+)storage by regulating oxygen defect in ammonium vanadate
2
作者 Yanyan Liu Ziyi Feng +3 位作者 Hanmei Jiang Xueying Dong Changgong Meng Yifu Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1171-1182,共12页
Defect engineering is an effective strategy for modifying the energy storage materials to improve their electrochemical performance.However,the impact of oxygen defect and its content on the electrochemical performanc... Defect engineering is an effective strategy for modifying the energy storage materials to improve their electrochemical performance.However,the impact of oxygen defect and its content on the electrochemical performances in the burgeoning aqueous NH_(4)^(+)storage field remains explored.Therefore,for the first time in this work,an oxygen-defective ammonium vanadate[(NH_(4))_(2)V_(10)O_(25)·8H_(2)O,denoted as Od-NHVO]with a novel 3D porous flower-like architecture was achieved via the reduction of thiourea in a mild reaction condition,which is a facile method that can realize the intention to regulate the oxygen defect content,with the capability of mass-production.The as-prepared Od_M-NHVO with moderate oxygen defect content can deliver a stable specific capacitance output(505 F g^(-1),252 mAh g^(-1)at 0.5 A g^(-1)with~80% capacitance retention after 10,000 cycles),which benefits from extra active sites,unimpeded NH_(4)^(+)-migration path and relatively high structure integrity.In contrast,low oxygen defect content will lead to the torpid electrochemical reaction kinetics while too high content of it will reduce the chargestorage capability and induce structural disintegration.The superior NH_(4)^(+)-storage behavior is achieved with the reversible intercalation/deintercalation process of NH_(4)^(+)accompanied by forming/breaking of hydrogen bond.As expected,the assembled flexible OdM-NHVO//PTCDI quasi-solid-state hybrid supercapacitor(FQSS HSC)also exhibits high areal capacitance,energy density and reliable flexibility.This work provides a new avenue for developing materials with oxygen-deficient structure for application in various aqueous non-metal cation storage systems. 展开更多
关键词 Ammonium vanadate Oxygen defect Ammonium-ion storage Hybrid supercapacitors Electrochemical performance
下载PDF
Synchronous organic-inorganic co-intercalated ammonium vanadate cathode for advanced aqueous zinc-ion batteries
3
作者 Wenpei Kang Bingchen Zhang +8 位作者 Zhurui Wang Zhengchunyu Zhang Mang Niu Xuguang An Zhenkai Mou Xiaoyu Fan Xuqiang Hu Baojuan Xi Shenglin Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期608-617,共10页
Vanadium-based cathode materials are attractive for aqueous zinc-ion batteries(AZIBs)owing to the high capacity from their open frameworks and multiple valences.However,the cycle stability and rate capability are stil... Vanadium-based cathode materials are attractive for aqueous zinc-ion batteries(AZIBs)owing to the high capacity from their open frameworks and multiple valences.However,the cycle stability and rate capability are still restricted by the low electrical conductivity and trapped diffusion kinetics.Here,we propose an organic-inorganic co-intercalation strategy to regulate the structure of ammonium vanadate(NH_(4)V_(4)O_(10),NVO).The introduction of Al^(3+)and polyaniline(PANI)induces the optimized layered structure and generation of urchin-like hierarchical construction(AP-NVO),based on heterogeneous nucleation and dissolution-recrystallization growth mechanism.Owing to these favorable features,the AP-NVO electrode delivers a desirable discharge capacity of 386 mA h g^(-1) at 1.0 A g^(-1),high-rate capability of 263 mA h g^(-1 )at 5.0 A g^(-1) and excellent cycling stability with 80.4%capacity retention over 2000 cycles at 5.0 A g^(-1).Such satisfactory electrochemical performance is believed to result from the enhanced reaction kinetics provided by the stable layered structure and a high intercalation pseudo-capacitance reaction.These results could provide enlightening insights into the design of layered vanadium oxide cathodematerials. 展开更多
关键词 Ammonium vanadate bronze Co-pre-intercalation Urchin-like hierarchical structure Aqueous zinc-ion batteries
下载PDF
Fast and Stable Zinc Anode‑Based Electrochromic Displays Enabled by Bimetallically Doped Vanadate and Aqueous Zn^(2+)/Na^(+)Hybrid Electrolytes
4
作者 Zhaoyang Song Bin Wang +5 位作者 Wu Zhang Qianqian Zhu Abdulhakem YElezzabi Linhua Liu William WYu Haizeng Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期231-241,共11页
Vanadates are a class of the most promising electrochromic materials for displays as their multicolor characteristics.However,the slow switching times and vanadate dissolution issues of recently reported vanadates sig... Vanadates are a class of the most promising electrochromic materials for displays as their multicolor characteristics.However,the slow switching times and vanadate dissolution issues of recently reported vanadates significantly hinder their diverse practical applications.Herein,novel strategies are developed to design electrochemically stable vanadates having rapid switching times.We show that the interlayer spacing is greatly broadened by introducing sodium and lanthanum ions into V_(3)O_(8)interlayers,which facilitates the transportation of cations and enhances the electrochemical kinetics.In addition,a hybrid Zn^(2+)/Na^(+)electrolyte is designed to inhibit vanadate dissolution while significantly accelerating electrochemical kinetics.As a result,our electrochromic displays yield the most rapid switching times in comparison with any reported Zn-vanadate electrochromic displays.It is envisioned that stable vanadate-based electrochromic displays having video speed switching are appearing on the near horizon. 展开更多
关键词 vanadates Hybrid electrolytes DISPLAYS Electrochromic
下载PDF
Tailored BiVO_(4)/In_(2)O_(3)nanostructures with boosted charge separation ability toward unassisted water splitting 被引量:1
5
作者 Mi Gyoung Lee Jin Wook Yang +10 位作者 Ik Jae Park Tae Hyung Lee Hoonkee Park Woo Seok Cheon Sol ALee Hyungsoo Lee Su Geun Ji Jun Min Suh Jooho Moon Jin Young Kim Ho Won Jang 《Carbon Energy》 SCIE CSCD 2023年第6期45-59,共15页
The development of new heterostructures with high photoactivity is a breakthrough for the limitation of solar-driven water splitting.Here,we first introduce indium oxide(In_(2)O_(3))nanorods(NRs)as a novel electron tr... The development of new heterostructures with high photoactivity is a breakthrough for the limitation of solar-driven water splitting.Here,we first introduce indium oxide(In_(2)O_(3))nanorods(NRs)as a novel electron transport layer for bismuth vanadate(BiVO_(4))with a short charge diffusion length.In_(2)O_(3)NRs reinforce the electron transport and hole blocking of BiVO_(4),surpassing the state-of-the-art photoelectrochemical performances of BiVO_(4)-based photoanodes.Also,a tannin-nickel-iron complex(TANF)is used as an oxygen evolution catalyst to speed up the reaction kinetics.The final TANF/BiVO_(4)/In_(2)O_(3)NR photoanode generates photocurrent densities of 7.1 mAcm^(−2) in sulfite oxidation and 4.2 mA cm^(−2) in water oxidation at 1.23 V versus the reversible hydrogen electrode.Furthermore,the“artificial leaf,”which is a tandem cell with a perovskite/silicon solar cell,shows a solar-to-hydrogen conversion efficiency of 6.2%for unbiased solar water splitting.We reveal significant advances in the photoactivity of TANF/BiVO_(4)/In_(2)O_(3)NRs from the tailored nanostructure and band structure for charge dynamics. 展开更多
关键词 bismuth vanadate HETEROJUNCTION indium oxide NANOSTRUCTURE photoelectrochemical water splitting
下载PDF
Highly dispersed V_2O_5/TiO_2 modified with transition metals(Cu,Fe,Mn,Co) as efficient catalysts for the selective reduction of NO with NH_3 被引量:30
6
作者 赵欣 黄垒 +4 位作者 李红蕊 扈航 韩瑾 施利毅 张登松 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1886-1899,共14页
Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in t... Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in the vanadium species and the formation of vanadates on the TiO2 support, and increased the amount of surface acid sites and the strength of these acids. The strong acid sites might be responsible for the high N2 selectivity at higher temperatures. Among these catalysts, Cu-V/TiO2 showed the highest activity and N2 selectivity at 225-375 ~C. The results of X-ray photo- electron spectroscopy, NH3-temperature-programmed desorption, and in-situ diffuse reflectance infrared Fourier transform spectroscopy suggested that the improved performance was probably due to more active surface oxygen species and increased strong surface acid sites. The outstanding activity, stability, and SO2/H2O durability of Cu-V/TiO2 make it a candidate to be a NOx removal catalyst for stationary flue gas. 展开更多
关键词 deNOx Selective catalytic reduction Vanadate Transition metal
下载PDF
Na2V6O16·2.14H2O nanobelts as a stable cathode for aqueous zinc-ion batteries with long-term cycling performance 被引量:4
7
作者 Fang Hu Di Xie +2 位作者 Depeng Zhao Guihong Song Kai Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期185-191,共7页
Aqueous zinc-ion batteries(ZIBs) have been considered as one of the most promising electrochemical devices for large-scale energy storage system owing to their low cost and high safety. Herein, Na2V6O16·2.14H2O n... Aqueous zinc-ion batteries(ZIBs) have been considered as one of the most promising electrochemical devices for large-scale energy storage system owing to their low cost and high safety. Herein, Na2V6O16·2.14H2O nanobelts are synthesized and applied as cathode material for ZIBs. The sample displays a high capacity of 466 m Ahg^-1 at 100 mAg^-1 and stable cycling performance with a capacity retention of 90% over 20 0 0 cycles at the 20 Ag^-1. Moreover, Na2V6O16·2.14H2O presents a capable rate ability and a high energy density of 312 Wh kg^-1 at a specific power of 70 Wkg^-1. The superior electrochemical performance is attributed to the large interlayer spacing and outstanding structure stability, which promise the highly reversible intercalation and extraction of zinc ion. The electrochemical kinetics and zinc ion storage mechanism are also investigated. This work demonstrates that nanoscale electrode materials with large interlayer spacing can effectively enhance the electrochemical performance of aqueous ZIBs, which can be extended to other metal ion batteries, such as magnesium ion batteries and aluminum ion batteries. 展开更多
关键词 AQUEOUS zinc-ion batteries NANOBELTS SODIUM vanadates Electrochemical performance
下载PDF
Rechargeable Aqueous Zinc-Ion Batteries in MgSO4/ZnSO4 Hybrid Electrolytes 被引量:4
8
作者 Yingmeng Zhang Henan Li +7 位作者 Shaozhuan Huang Shuang Fan Lingna Sun Bingbing Tian Fuming Chen Ye Wang Yumeng Shi Hui Ying Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第5期33-48,共16页
MgSO4 is chosen as an additive to address the capacity fading issue in the rechargeable zinc-ion battery system of MgxV2O5·nH2O//ZnSO4//zinc.Electrolytes with different concentration ratios of ZnSO4 and MgSO4 are... MgSO4 is chosen as an additive to address the capacity fading issue in the rechargeable zinc-ion battery system of MgxV2O5·nH2O//ZnSO4//zinc.Electrolytes with different concentration ratios of ZnSO4 and MgSO4 are investigated.The batteries measured in the 1 M ZnSO4^-1 M MgSO4 electrolyte outplay other competitors,which deliver a high specific capacity of 374 mAh g^-1 at a current density of 100 mA g^-1 and exhibit a competitive rate performance with the reversible capacity of 175 mAh g^-1 at 5 A g^-1.This study provides a promising route to improve the performance of vanadium-based cathodes for aqueous zinc-ion batteries with electrolyte optimization in cost-effective electrolytes. 展开更多
关键词 AQUEOUS zinc-ion batteries HYBRID electrolytes ELECTROLYTE additives Magnesium ions vanadates
下载PDF
Removal of vanadate anion by calcined Mg/Al-CO_3 layered double hydroxide in aqueous solution 被引量:3
9
作者 宋海磊 焦飞鹏 +3 位作者 蒋新宇 于金刚 陈晓青 杜邵龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3337-3345,共9页
Mg/Al-CO3 layered double hydroxide (LDH2) with Mg(II):Al(III) molar ratio of 2:1 was synthesized by co-precipitation method and its calcined product Mg2Al-CLDH(CLDH2) was prepared by heating Mg2Al-LDH at 773... Mg/Al-CO3 layered double hydroxide (LDH2) with Mg(II):Al(III) molar ratio of 2:1 was synthesized by co-precipitation method and its calcined product Mg2Al-CLDH(CLDH2) was prepared by heating Mg2Al-LDH at 773 K for 6 h. Removal of vanadate anion ( 3-4VO ) from aqueous solution on CLDH2 was studied. Batch studies were carried out to address various experimental parameters such as Mg/Al molar ratio, adsorbent dosage, initial concentration of solution, contact time and temperature. Vanadate was removed effectively at the optimized experimental conditions. The adsorption kinetics data fitted the pseudo-first-order model. Isotherms for adsorption vanadate by CLDH2 at different solution temperatures were well described using the Langmuir and Freundlich equations, and the isotherm parameters were calculated using linear regression analysis. The adsorption data fitted the langmuir model with good values of the correlation coefficient (R2〉0.999). The negative value ofΔGΘand the positive value ofΔHΘindicate that the adsorption processes are spontaneous endothermic in nature. The mechanism of adsorption suggests that the surface adsorption is the main process. 展开更多
关键词 layered double hydroxide VANADATE adsorption KINETICS THERMODYNAMICS
下载PDF
Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts 被引量:8
10
作者 Wenyu Zhang Shuquan Liang +2 位作者 Guozhao Fang Yongqiang Yang Jiang Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期215-226,共12页
Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain ... Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain chemically stable in aqueous electrolyte and provide a robust structure for the storage of Zn2+.Here,we report on H11Al2V6O23.2@graphene(HAVO@G)with exceptionally large layer spacing of(001)plane(13.36?).The graphene-wrapped structure can keep the structure stable during discharge/charge process,thereby promoting the inhibition of the dissolution of elements in the aqueous electrolyte.While used as cathode for AZIBs,HAVO@G electrode delivers ideal rate performance(reversible capacity of 305.4,276.6,230.0,201.7,180.6 mAh g?1 at current densities between 1 and 10 A g?1).Remarkably,the electrode exhibits excellent and stable cycling stability even at a high loading mass of^15.7 mg cm?2,with an ideal reversible capacity of 131.7 mAh g?1 after 400 cycles at 2 A g?1. 展开更多
关键词 Aluminum VANADATE GRAPHENE CATHODE High mass LOADING AQUEOUS zinc-ion BATTERY
下载PDF
High‑Energy and High‑Power Pseudocapacitor–Battery Hybrid Sodium‑Ion Capacitor with Na^(+) Intercalation Pseudocapacitance Anode 被引量:8
11
作者 Qiulong Wei Qidong Li +5 位作者 Yalong Jiang Yunlong Zhao Shuangshuang Tan Jun Dong Liqiang Mai Dong‑Liang Peng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期209-221,共13页
High-performance and low-cost sodium-ion capacitors(SICs)show tremendous potential applications in public transport and grid energy storage.However,conventional SICs are limited by the low specific capacity,poor rate ... High-performance and low-cost sodium-ion capacitors(SICs)show tremendous potential applications in public transport and grid energy storage.However,conventional SICs are limited by the low specific capacity,poor rate capability,and low initial coulombic efficiency(ICE)of anode materials.Herein,we report layered iron vanadate(Fe5V15O39(OH)9·9H2O)ultrathin nanosheets with a thickness of~2.2 nm(FeVO UNSs)as a novel anode for rapid and reversible sodium-ion storage.According to in situ synchrotron X-ray diffractions and electrochemical analysis,the storage mechanism of FeVO UNSs anode is Na+intercalation pseudocapacitance under a safe potential window.The FeVO UNSs anode delivers high ICE(93.86%),high reversible capacity(292 mAh g^−1),excellent cycling stability,and remarkable rate capability.Furthermore,a pseudocapacitor–battery hybrid SIC(PBH-SIC)consisting of pseudocapacitor-type FeVO UNSs anode and battery-type Na3(VO)2(PO4)2F cathode is assembled with the elimination of presodiation treatments.The PBH-SIC involves faradaic reaction on both cathode and anode materials,delivering a high energy density of 126 Wh kg^−1 at 91 W kg^−1,a high power density of 7.6 kW kg^−1 with an energy density of 43 Wh kg−1,and 9000 stable cycles.The tunable vanadate materials with high-performance Na+intercalation pseudocapacitance provide a direction for developing next-generation highenergy capacitors. 展开更多
关键词 Sodium-ion capacitors PSEUDOCAPACITANCE Hybrid capacitors Two-dimensional materials Iron vanadate
下载PDF
Ag nanoparticles deposited on oxygen-vacancy-containing BiVO_4 for enhanced near-infrared photocatalytic activity 被引量:7
12
作者 Chunjing Shi Xiaoli Dong +2 位作者 Xiuying Wang Hongchao Ma Xiufang Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第1期128-137,共10页
This study investigates the photodegradation of the organic dye rhodamine B by Ag‐nanoparticlecontaining BiVO4catalysts under different irradiation conditions.The catalysts consist of Ag nanoparticles deposited on ox... This study investigates the photodegradation of the organic dye rhodamine B by Ag‐nanoparticlecontaining BiVO4catalysts under different irradiation conditions.The catalysts consist of Ag nanoparticles deposited on oxygen‐vacancy‐containing BiVO4.The morphology of the BiVO4is olive shaped,and it has a uniform size distribution.The BiVO4possesses a high oxygen vacancy density,and the resulting Ag nanoparticle‐BiVO4catalyst exhibits higher photocatalytic activity than BiVO4.The RhB degradation by the Ag nanoparticle‐BiVO4catalyst is99%after100min of simulated solar irradiation.BiVO4containing oxygen vacancies as a rationally designed support extends the catalyst response into the near‐infrared region,and facilitates the trapping and transfer of plasmonic hot electrons.The enhanced photocatalytic efficiency is attributed to charge transfer from the BiVO4to Ag nanoparticles,and surface plasmon resonance of the Ag nanoparticles.These insights into electron‐hole separation and charge transfer may arouse interest in solar‐driven wastewater treatment and water splitting.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved. 展开更多
关键词 Bismuth vanadate Oxygen vacancy Silver nanoparticle Surface plasmon resonance Solar‐driven
下载PDF
Electro-deoxidation of V_2O_3 in molten CaCl_2-NaCl-CaO 被引量:6
13
作者 Shu-lan Wang Shi-chao Li +1 位作者 Long-fei Wan Chuan-hua Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第3期212-216,共5页
The electro-deoxidation of V2O3 precursors was studied. Experiments were carried out with a two-terminal electrochemical cell, which was comprised of a molten electrolyte of CaCl2 and NaC1 with additions of CaO, a cat... The electro-deoxidation of V2O3 precursors was studied. Experiments were carried out with a two-terminal electrochemical cell, which was comprised of a molten electrolyte of CaCl2 and NaC1 with additions of CaO, a cathode of compact V2O3, and a graphite anode under the potential of 3.0 V at 1173 K. The phase constitution and composition as well as the morphology of the samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). 3 g of V2O3 could be converted to vanadium metal powder within the processing time of 8 h. The kinetic pathway was investigated by analyzing the product phase in samples prepared at different reduction stages. CaO added in the reduction path of V2O3 formed the intermediate product CaV2O4. 展开更多
关键词 vanadous oxide ELECTRO-DEOXIDATION VANADIUM molten salt electrochemical cells
下载PDF
Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material 被引量:4
14
作者 Weijun Zhou Minfeng Chen +4 位作者 Anran Wang Aixiang Huang Jizhang Chen Xinwu Xu Ching-Ping Wong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期377-384,I0012,共9页
It is urgent to develop high-performance cathode materials for the emerging aqueous zinc-ion batteries with a facile strategy and optimize the related components.Herein,a Ca0.23V2O5·0.95 H2O nanobelt cathode mate... It is urgent to develop high-performance cathode materials for the emerging aqueous zinc-ion batteries with a facile strategy and optimize the related components.Herein,a Ca0.23V2O5·0.95 H2O nanobelt cathode material with a rather large interlayer spacing of 13.0 A is prepared via a one-step hydrothermal approach.The battery with this cathode material and 3 M Zn(CF3SO3)2 electrolyte displays high specific capacity(355.2 mAh g^(-1) at 0.2 A g^(-1)),great rate capability(240.8 mAh g^(-1) at 5 A g^(-1)),and excellent cyclability(97.7% capacity retention over 2000 cycles).Such superior performances are ascribed to fast electrochemical kinetics,outstanding electrode/electrolyte interface stability,and nearly dendrite-free characteristic.Instead,when ZnSO4 or Zn(ClO4)2 is used to replace Zn(CF3SO3)2,the electrochemical performances become much inferior,due to the slow electrochemical kinetics,inhomogeneous Zn stripping/plating process,and the formation of large dendrites and byproducts.This work not only discloses a high-performance cathode material for aqueous zinc-ion batteries but also offers a reference for the choice of electrolyte salt. 展开更多
关键词 Calcium vanadate hydrates Electrolytes Interfacial stability Zn-ion batteries Aqueous energy storage
下载PDF
Crystal Facet Engineering of TiO_(2) Nanostructures for Enhancing Photoelectrochemical Water Splitting with BiVO_(4) Nanodots 被引量:4
15
作者 Mi Gyoung Lee Jin Wook Yang +9 位作者 Hoonkee Park Cheon Woo Moon Dinsefa M.Andoshe Jongseong Park Chang‑Ki Moon Tae Hyung Lee Kyoung Soon Choi Woo Seok Cheon Jang‑Joo Kim Ho Won Jang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第3期201-215,共15页
Although bismuth vanadate(BiVO4)has been promising as photoanode material for photoelectrochemical water splitting,its charge recombination issue by short charge diffusion length has led to various studies about heter... Although bismuth vanadate(BiVO4)has been promising as photoanode material for photoelectrochemical water splitting,its charge recombination issue by short charge diffusion length has led to various studies about heterostructure photoanodes.As a hole blocking layer of BiVO4,titanium dioxide(TiO_(2)) has been considered unsuitable because of its relatively positive valence band edge and low electrical conductivity.Herein,a crystal facet engineering of TiO_(2) nanostructures is proposed to control band structures for the hole blocking layer of BiVO4 nanodots.We design two types of TiO_(2) nanostructures,which are nanorods(NRs)and nanoflowers(NFs)with different(001)and(110)crystal facets,respectively,and fabricate BiVO4/TiO_(2) heterostructure photoanodes.The BiVO4/TiO_(2) NFs showed 4.8 times higher photocurrent density than the BiVO4/TiO_(2) NRs.Transient decay time analysis and time-resolved photoluminescence reveal the enhancement is attributed to the reduced charge recombination,which is originated from the formation of type II band alignment between BiVO4 nanodots and TiO_(2) NFs.This work provides not only new insights into the interplay between crystal facets and band structures but also important steps for the design of highly efficient photoelectrodes. 展开更多
关键词 Crystal facet control Bismuth vanadate Titanium dioxide HETEROJUNCTION Water splitting
下载PDF
Porous Co_(2)VO_(4) Nanodisk as a High-Energy and Fast-Charging Anode for Lithium-Ion Batteries 被引量:4
16
作者 Jinghui Ren Zhenyu Wang +12 位作者 Peng Xu Cong Wang Fei Gao Decheng Zhao Shupei Liu Han Yang Di Wang Chunming Niu Yusong Zhu Yutong Wu Xiang Liu Zhoulu Wang Yi Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第1期107-120,共14页
High-energy–density lithium-ion batteries(LIBs)that can be safely fast-charged are desirable for electric vehicles.However,sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety is... High-energy–density lithium-ion batteries(LIBs)that can be safely fast-charged are desirable for electric vehicles.However,sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density.Here we hypothesize that a cobalt vanadate oxide,Co_(2)VO_(4),can be attractive anode material for fast-charging LIBs due to its high capacity(~1000 mAh g^(−1))and safe lithiation potential(~0.65 V vs.Li^(+)/Li).The Li+diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15×10^(-10) cm^(2) s^(−1),proving Co_(2)VO_(4) a promising anode in fast-charging LIBs.A hexagonal porous Co2VO4 nanodisk(PCVO ND)structure is designed accordingly,featuring a high specific surface area of 74.57 m^(2) g^(−1) and numerous pores with a pore size of 14 nm.This unique structure succeeds in enhancing Li^(+) and electron transfer,leading to superior fast-charging performance than current commercial anodes.As a result,the PCVO ND shows a high initial reversible capacity of 911.0 mAh g^(−1) at 0.4 C,excellent fast-charging capacity(344.3 mAh g^(−1) at 10 C for 1000 cycles),outstanding long-term cycling stability(only 0.024% capacity loss per cycle at 10 C for 1000 cycles),confirming the commercial feasibility of PCVO ND in fast-charging LIBs. 展开更多
关键词 Lithium-ion batteries ANODE Fast-charging HIGH-ENERGY Cobalt vanadate oxide
下载PDF
Enhanced Reversible Zinc Ion Intercalation in Deficient Ammonium Vanadate for High-Performance Aqueous Zinc-Ion Battery 被引量:5
17
作者 Quan Zong Wei Du +6 位作者 Chaofeng Liu Hui Yang Qilong Zhang Zheng Zhou Muhammad Atif Mohamad Alsalhi Guozhong Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期13-27,共15页
Ammonium vanadate with bronze structure(NH_(4)V_(4)O_(10))is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost.However,the extraction of NH^(+)_(4) at a high voltage du... Ammonium vanadate with bronze structure(NH_(4)V_(4)O_(10))is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost.However,the extraction of NH^(+)_(4) at a high voltage during charge/discharge processes leads to irreversible reaction and structure degradation.In this work,partial NH^(+)_(4) ions were pre-removed from NH_(4)V_(4)O_(10) through heat treatment;NH_(4)V_(4)O_(10) nanosheets were directly grown on carbon cloth through hydrothermal method.Defi-cient NH_(4)V_(4)O_(10)(denoted as NVO),with enlarged interlayer spacing,facilitated fast zinc ions transport and high storage capacity and ensured the highly reversible electrochemical reaction and the good stability of layered structure.The NVO nanosheets delivered a high specific capac-ity of 457 mAh g^(−1) at a current density of 100 mA g^(−1) and a capacity retention of 81%over 1000 cycles at 2 A g^(−1).The initial Coulombic efficiency of NVO could reach up to 97%compared to 85%of NH_(4)V_(4)O_(10) and maintain almost 100%during cycling,indicating the high reaction reversibility in NVO electrode. 展开更多
关键词 Deficient ammonium vanadate Large interlayer spacing Reversible redox reaction Electrochemical mechanism
下载PDF
A High-Capacity Ammonium Vanadate Cathode for Zinc-Ion Battery 被引量:4
18
作者 Qifei Li Xianhong Rui +6 位作者 Dong Chen Yuezhan Feng Ni Xiao Liyong Gan Qi Zhang Yan Yu Shaoming Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第5期153-164,共12页
Given the advantages of being abundant in resources,environmental benign and highly safe,rechargeable zinc-ion batteries(ZIBs)enter the global spotlight for their potential utilization in large-scale energy storage.De... Given the advantages of being abundant in resources,environmental benign and highly safe,rechargeable zinc-ion batteries(ZIBs)enter the global spotlight for their potential utilization in large-scale energy storage.Despite their preliminary success,zinc-ion storage that is able to deliver capacity>400 mAh g^-1 remains a great challenge.Here,we demonstrate the viability of NH4V4O10(NVO)as high-capacity cathode that breaks through the bottleneck of ZIBs in limited capacity.The first-principles calculations reveal that layered NVO is a good host to provide fast Zn^2+ions diffusion channel along its[010]direction in the interlayer space.On the other hand,to further enhance Zn^2+ion intercalation kinetics and long-term cycling stability,a three-dimensional(3D)flower-like architecture that is self-assembled by NVO nanobelts(3D-NVO)is rationally designed and fabricated through a microwave-assisted hydrothermal method.As a result,such 3D-NVO cathode possesses high capacity(485 mAh g^-1)and superior long-term cycling performance(3000 times)at 10 A g^-1(~50 s to full discharge/charge).Additionally,based on the excellent 3D-NVO cathode,a quasi-solid-state ZIB with capacity of 378 mAh g^-1is developed. 展开更多
关键词 Zinc-ion BATTERY AMMONIUM VANADATE NH4V4O10
下载PDF
Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries 被引量:4
19
作者 Xing-hua Qin Ye-hong Du +4 位作者 Peng-chao Zhang Xin-yu Wang Qiong-qiong Lu Ai-kai Yang Jun-cai Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1684-1692,共9页
Aqueous zinc-ion batteries(ZIBs)are deemed as the idea option for large-scale energy storage systems owing to many alluring merits including low manufacture cost,environmental friendliness,and high operations safety.H... Aqueous zinc-ion batteries(ZIBs)are deemed as the idea option for large-scale energy storage systems owing to many alluring merits including low manufacture cost,environmental friendliness,and high operations safety.However,to develop high-performance cathode is still significant for practical application of ZIBs.Herein,Ba_(0.23)V_(2)O_(5)·1.1H_(2)O(BaVO)nanobelts were fabricated as cathode materials of ZIBs by a typical hydrothermal synthesis method.Benefiting from the increased interlayer distance of 1.31 nm by Ba2+ and H2O pre-intercalated,the obtained BaVO nanobelts showed an excellent initial discharge capacity of 378 mAh·g^(-1) at 0.1 A·g^(-1),a great rate performance(e.g.,172 mAh·g^(-1) at 5 A·g^(-1)),and a superior capacity retention(93% after 2000 cycles at 5 A·g^(-1)). 展开更多
关键词 aqueous zinc-ion batteries barium vanadate nanobelts increased interlayer distance long cycle life
下载PDF
Cyclic metallurgical process for extracting Ⅴ and Cr from vanadium slag: Part Ⅰ. Separation and recovery of Ⅴ from chromium-containing vanadate solution 被引量:3
20
作者 Xue-wen WANG Ming-e YANG +3 位作者 Yu-qi MENG Da-xiong GAO Ming-yu WANG Zi-bi FU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期807-816,共10页
The separation and recovery of V from chromium-containing vanadate solution were investigated by a cyclic metallurgical process including selective precipitation of vanadium,vanadium leaching and preparation of vanadi... The separation and recovery of V from chromium-containing vanadate solution were investigated by a cyclic metallurgical process including selective precipitation of vanadium,vanadium leaching and preparation of vanadium pentoxide.By adding Ca(OH)_(2) and ball milling,not only the V in the solution can be selectively precipitated,but also the leaching kinetics of the precipitate is significantly improved.The precipitation efficiency of V is 99.59%by adding Ca(OH)_(2) according to Ca/V molar ratio of 1.75:1 into chromium-containing vanadate solution and ball milling for 60 min at room temperature,while the content of Cr in the precipitate is 0.04%.The leaching rate of V reaches 99.35%by adding NaHCO_(3) into water according to NaHCO_(3)/V molar ratio of 2.74:1 to leach V from the precipitate with L/S ratio of 4:1 mL/g and stirring for 60 min at room temperature.The crystals of NH_(4)VO_(3) are obtained by adjusting the leaching solution pH to be 8.0 with CO2 and then adding NH_(4)HCO_(3) according to NH_(4)HCO_(3)/NaVO_(3) molar ratio of 1:1 and stirring for 8 h at room temperature.After filtration,the crystallized solution containing ammonia is reused to leach the precipitate of calcium vanadates,and the leaching efficiency of V is>99%after stirring for 1 h at room temperature.Finally,the product of V_(2)O_(5) with purity of 99.6%is obtained by calcining the crystals at 560℃ for 2 h. 展开更多
关键词 chromium-containing vanadate solution calcium salt precipitating vanadium sodium bicarbonate leaching ammonium salt precipitating vanadate cyclic metallurgical process
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部