In this study, vanadium doped TiO2 thin films were deposited on glass substrates using a sol-gel dip-coating process. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis spectrophotomete...In this study, vanadium doped TiO2 thin films were deposited on glass substrates using a sol-gel dip-coating process. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis spectrophotometer were used to characterize the structural, chemical and the optical properties of the thin films. The photo-catalytic activities of films were investigated by methylene blue degradation. Water contact angle on the film surfaces was measured by a water contact angle analyzer. The results indicated that vanadium doping had a significant effect on the self-cleaning properties of TiO2 thin films.展开更多
The nitrogen-doped porous TiO2 layer on Ti6Al4V substrate was fabricated by plasma-based ion implantation of He, O and N. In order to increase the photodegradation efficiency of TiO2 layer, two methods were used in th...The nitrogen-doped porous TiO2 layer on Ti6Al4V substrate was fabricated by plasma-based ion implantation of He, O and N. In order to increase the photodegradation efficiency of TiO2 layer, two methods were used in the process by forming mesopores to increase the specific surface area and by nitrogen doping to increase visible light absorption. Importantly, TiO2 formation, porosity architectures and nitrogen doping can be performed by implantation of He, O and N in one step. After implantation, annealing at 650 ℃ leads to a mixing phase of anatase with a little rutile in the implanted layer. By removing the near surface compact layer using argon ion sputtering, the meso-porous structure was exposed on surfaces. Nitrogen doping enlarges the photo-response region of visible light. Moreover, the nitrogen dose of 8×1015 ion/cm2 induces a stronger visible light absorption. The photodegradation of rhodamine B solution with visible light sources indicates that the mesopores on surfaces and nitrogen doping contribute to an apparent increase of photocatalysis efficiency.展开更多
The hierarchical nanostructured N-doped TiO2 immobilized activated carbon fiber(N-TiO2/ACF)porous composites are fabricated to removal dynamic toluene gas.The results show that nitrogen ions doping and ACF modificatio...The hierarchical nanostructured N-doped TiO2 immobilized activated carbon fiber(N-TiO2/ACF)porous composites are fabricated to removal dynamic toluene gas.The results show that nitrogen ions doping and ACF modification can decrease the band gap of TiO2,leading to red shift toward visible light region.Interestingly,N-TiO2/ACF exhibits strongly synergistic effect owing to high surface area,good crystallinity,enhanced bandgap structure and light harvesting.The toluene removal rate of N-TiO2/ACF composites is 2.29 times higher than that of TiO2.The N-TiO2/ACF for toluene degradation followed the Langmuir-Hinshelwood kinetic model,and the rate constant is enhanced 8 times compared with TiO2.The possible photodegradation pathway and mechanisms are proposed.展开更多
N-doped TiO2 nanocrystals were prepared using titanium alkoxide as precipitant with different proportional materials. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission el...N-doped TiO2 nanocrystals were prepared using titanium alkoxide as precipitant with different proportional materials. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV-vis diffuse reflectance spectra. It is confirmed experimentally that the photocatalytic activity of N-doped TiO2 is much higher than that of Degussa P25, when used for the degradation of crystal violet. The degradation kinetics follows an apparent first-order reaction, which is consistent with a generally observed Langmuir-Hinshelwood mechanism. The doping of TiO2 with nitrogen significantly increases the absorption in the region of visible light. The energy of the band gap of N-doped TiO2 is 2.92 eV. The better performance of N-doped TiO2 can be explained by the fact that it is also excited with longer-wavelength light.展开更多
In recent years, especially when there is increasing concern about the safety issue of lithium-ion batteries (LIBs), aqueous Zn-ion batteries (ZIBs) have been getting a lot of attention because of their cost-effective...In recent years, especially when there is increasing concern about the safety issue of lithium-ion batteries (LIBs), aqueous Zn-ion batteries (ZIBs) have been getting a lot of attention because of their cost-effectiveness, materials abundance, high safety, and ecological friendliness. Their working voltage and specific capacity are mainly determined by their cathode materials. Vanadium oxides are promising cathode materials for aqueous ZIBs owing to their low cost, abundant resources, and multivalence. However, vanadium oxide cathodes still suffer from unsatisfactory capacity, poor stability, and low electrical conductivity. In this work, cascading V_(2)O_(3)/nitrogen doped carbon (V_(2)O_(3)/NC) hybrid nanosheets are prepared for high-performance aqueous ZIBs by pyrolyzing pentyl viologen dibromide (PV) intercalated V_(2)O5 nanosheets. The unique structure features of V_(2)O_(3)/NC nanosheets, including thin sheet-like morphology, small crystalline V_(2)O_(3) nanoparticles, and conductive NC layers, endow V_(2)O_(3)/NC with superior performance compared to most of the reported vanadium oxide cathode materials for aqueous ZIBs. The V_(2)O_(3)/NC cathode exhibits the discharge capacity of 405 mAh/g at 0.5 A/g, excellent rate capability (159 mAh/g at 20 A/g), and outstanding cycling stability with 90% capacity retention over 4000 cycles at 20 A/g.展开更多
Nitrogen-doped titanium dioxide(N/TiO2)nanophotocatalysts were successfully synthesized in the presence of environmentally benign nitrogen dopant source,guanidinium chloride,by the sol-gel method.The effect of calcina...Nitrogen-doped titanium dioxide(N/TiO2)nanophotocatalysts were successfully synthesized in the presence of environmentally benign nitrogen dopant source,guanidinium chloride,by the sol-gel method.The effect of calcination temperature(300–600℃)on their physicochemical properties was investigated by means XRD,XPS,FESEM,HRTEM,Raman spectroscopy,UV-vis DRS,PL and BET.Moreover,their photocatalytic activities were evaluated against rhodamine B(RhB)degradation under direct sun light.Results showed that the crystal phase of spheroidal N/TiO2 nanoparticles was changed from anatase(300℃)to rutile(600℃)via an intermediate anatase/rutile(A/R)mixed phase(400–500℃),and the RhB photodegradation performance was increased with the decrease of the calcination temperature.Notably,N/TiO2 prepared at 400℃demonstrated the best degradation performance(99%)after 5 h irradiation.The enhanced performance with high photostability was mainly attributed to its higher surface area and pore volume,stronger light absorption,and lower recombination rate.Such nanomaterials have practical applications for environmental remediation.展开更多
文摘In this study, vanadium doped TiO2 thin films were deposited on glass substrates using a sol-gel dip-coating process. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis spectrophotometer were used to characterize the structural, chemical and the optical properties of the thin films. The photo-catalytic activities of films were investigated by methylene blue degradation. Water contact angle on the film surfaces was measured by a water contact angle analyzer. The results indicated that vanadium doping had a significant effect on the self-cleaning properties of TiO2 thin films.
基金Project(20040213048) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(20090450737) supported by the China Postdoctoral Science Foundation
文摘The nitrogen-doped porous TiO2 layer on Ti6Al4V substrate was fabricated by plasma-based ion implantation of He, O and N. In order to increase the photodegradation efficiency of TiO2 layer, two methods were used in the process by forming mesopores to increase the specific surface area and by nitrogen doping to increase visible light absorption. Importantly, TiO2 formation, porosity architectures and nitrogen doping can be performed by implantation of He, O and N in one step. After implantation, annealing at 650 ℃ leads to a mixing phase of anatase with a little rutile in the implanted layer. By removing the near surface compact layer using argon ion sputtering, the meso-porous structure was exposed on surfaces. Nitrogen doping enlarges the photo-response region of visible light. Moreover, the nitrogen dose of 8×1015 ion/cm2 induces a stronger visible light absorption. The photodegradation of rhodamine B solution with visible light sources indicates that the mesopores on surfaces and nitrogen doping contribute to an apparent increase of photocatalysis efficiency.
基金This study was supported by the CNPC Research Institute of Safety and Environmental Protection Technology(No.PPCIP2017005).
文摘The hierarchical nanostructured N-doped TiO2 immobilized activated carbon fiber(N-TiO2/ACF)porous composites are fabricated to removal dynamic toluene gas.The results show that nitrogen ions doping and ACF modification can decrease the band gap of TiO2,leading to red shift toward visible light region.Interestingly,N-TiO2/ACF exhibits strongly synergistic effect owing to high surface area,good crystallinity,enhanced bandgap structure and light harvesting.The toluene removal rate of N-TiO2/ACF composites is 2.29 times higher than that of TiO2.The N-TiO2/ACF for toluene degradation followed the Langmuir-Hinshelwood kinetic model,and the rate constant is enhanced 8 times compared with TiO2.The possible photodegradation pathway and mechanisms are proposed.
基金supported by the Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (No.2008BS09016)the Nature Science Foundation of Shandong Province (No.Y2007B15)the Scientific Research Program of Shandong Province Education Department, China (No.J06D55)
文摘N-doped TiO2 nanocrystals were prepared using titanium alkoxide as precipitant with different proportional materials. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV-vis diffuse reflectance spectra. It is confirmed experimentally that the photocatalytic activity of N-doped TiO2 is much higher than that of Degussa P25, when used for the degradation of crystal violet. The degradation kinetics follows an apparent first-order reaction, which is consistent with a generally observed Langmuir-Hinshelwood mechanism. The doping of TiO2 with nitrogen significantly increases the absorption in the region of visible light. The energy of the band gap of N-doped TiO2 is 2.92 eV. The better performance of N-doped TiO2 can be explained by the fact that it is also excited with longer-wavelength light.
基金funding support from the Ministry of Science and Technology of China (No. 2012CB933403)Beijing Natural Science Foundation (No. 2182086)the National Natural Science Foundation of China (Nos. 51425302, 51302045)。
文摘In recent years, especially when there is increasing concern about the safety issue of lithium-ion batteries (LIBs), aqueous Zn-ion batteries (ZIBs) have been getting a lot of attention because of their cost-effectiveness, materials abundance, high safety, and ecological friendliness. Their working voltage and specific capacity are mainly determined by their cathode materials. Vanadium oxides are promising cathode materials for aqueous ZIBs owing to their low cost, abundant resources, and multivalence. However, vanadium oxide cathodes still suffer from unsatisfactory capacity, poor stability, and low electrical conductivity. In this work, cascading V_(2)O_(3)/nitrogen doped carbon (V_(2)O_(3)/NC) hybrid nanosheets are prepared for high-performance aqueous ZIBs by pyrolyzing pentyl viologen dibromide (PV) intercalated V_(2)O5 nanosheets. The unique structure features of V_(2)O_(3)/NC nanosheets, including thin sheet-like morphology, small crystalline V_(2)O_(3) nanoparticles, and conductive NC layers, endow V_(2)O_(3)/NC with superior performance compared to most of the reported vanadium oxide cathode materials for aqueous ZIBs. The V_(2)O_(3)/NC cathode exhibits the discharge capacity of 405 mAh/g at 0.5 A/g, excellent rate capability (159 mAh/g at 20 A/g), and outstanding cycling stability with 90% capacity retention over 4000 cycles at 20 A/g.
文摘Nitrogen-doped titanium dioxide(N/TiO2)nanophotocatalysts were successfully synthesized in the presence of environmentally benign nitrogen dopant source,guanidinium chloride,by the sol-gel method.The effect of calcination temperature(300–600℃)on their physicochemical properties was investigated by means XRD,XPS,FESEM,HRTEM,Raman spectroscopy,UV-vis DRS,PL and BET.Moreover,their photocatalytic activities were evaluated against rhodamine B(RhB)degradation under direct sun light.Results showed that the crystal phase of spheroidal N/TiO2 nanoparticles was changed from anatase(300℃)to rutile(600℃)via an intermediate anatase/rutile(A/R)mixed phase(400–500℃),and the RhB photodegradation performance was increased with the decrease of the calcination temperature.Notably,N/TiO2 prepared at 400℃demonstrated the best degradation performance(99%)after 5 h irradiation.The enhanced performance with high photostability was mainly attributed to its higher surface area and pore volume,stronger light absorption,and lower recombination rate.Such nanomaterials have practical applications for environmental remediation.