Experiments comparing microwave blank roasting and conventional blank roasting for typical vanadium-bearing stone coal from Hubei Province in central China, in which vanadium is present in muscovite, were conducted to...Experiments comparing microwave blank roasting and conventional blank roasting for typical vanadium-bearing stone coal from Hubei Province in central China, in which vanadium is present in muscovite, were conducted to investigate the effects of roasting tempera- ture, roasting time, H2SO4 concentration, and leaching time on vanadium extraction. The results show that the vanadium leaching efficiency is 84% when the sample is roasted at 800℃ for 30 min by microwave irradiation and the H2SO4 concentration, liquid/solid ratio, leaching temperature, and leaching time are set as 20vo1%, 1.5:1 mL.g-1, 95℃, and 8 h, respectively. However, the vanadium leaching efficiency achieved for the sample subjected to conventional roasting at 900℃ for 60 min is just 71% under the same leaching conditions. Scanning electron microscopy (SEM) analysis shows that the microwave roasted samples contain more cracks and that the particles are more porous compared to the conventionally roasted samples. According to the results of X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) analyses, neither of these roasting methods could completely destroy the mica lattice structure under the experimental conditions; however, both methods deformed the muscovite structure and facilitated the leaching process. Comparing with conventional roasting, microwave roasting causes a greater deformation of the mineral structure at a lower temperature for a shorter roasting time.展开更多
Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various det...Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various determination methods. The effects of leaching time,leaching temperature,leaching agent concentration,leaching L/S ratio,granularity of material,additive consumption were investigated based on the mineralogy.The results show that under the conditions of leaching time of 3-4 h, temperature of 150℃,sulfuric acid consumption of 25%?30%,ratio of liquid to solid of 1.2:1,the granularity less than 0.074 mm, additive consumption of 3%-5%,and oxygen pressure of 1.2 MPa,and the vanadium leaching rate can be more than 92%by the method of two-step pressurized acid leaching.The powdery V2O5 product with 99.52%in V2O5 content is obtained by the flowsheet of acid recovery,removing iron by reduction process,solvent extraction,precipitating vanadium with ammonium water,and pyrolysis from the stone-coal oxygen pressure acid-leaching solution.The total recovery efficiency of vanadium is above 85%,which is more than 20%higher than that obtained in the conventional process.Furthermore,the new process does not cause air pollution since no HCl or Cl2 is released by calcination of the raw material.展开更多
The extraction technology of vanadium from stone coal by means of no-salt-roasting and dilute acid solution leaching treatment has the advantages of low pollution, low investment, as well as high vanadium leaching eff...The extraction technology of vanadium from stone coal by means of no-salt-roasting and dilute acid solution leaching treatment has the advantages of low pollution, low investment, as well as high vanadium leaching efficiency, which makes it the best technology for extending application. In the present study, the effects of vanadium occurrence state in stone coal, roasting temperature and additive agent on the leaching efficiency of vanadium were studied. The results indicate that the effect of vanadium occurrence state on the extracting vanadium technology is obvious. If the vanadium component in stone coal existed in amorphous phase form, this type of stone coal can be treated by no-slat-roasting and dilute acid solution leaching technology; while the vanadium-bearing crystalline phase existed in stone coal, the roasting additive must be added to destroy this crystalline form so as to acquire high vanadium leaching rate.展开更多
A new process of extracting vanadium from the stone coal vanadium ore in Fangshankou, Dtmhuang area of Gansu Province, China was introduced. Various leaching experiments were carried out, and the results show that the...A new process of extracting vanadium from the stone coal vanadium ore in Fangshankou, Dtmhuang area of Gansu Province, China was introduced. Various leaching experiments were carried out, and the results show that the vanadium ore in Fangshankou is difficult to process due to its high consumption of acid and the high leaching rate of impurities. However, the leaching rate can be up to 80% and the content of V2O5 in the residue can be between 0.22%-0.25% in the process of ore fme grinding→oxidation roasting→mixing and ripening→aqueous leaching→P2O4 solvent extraction→sulfuric acid stripping→oxidation and precipitation→decomposition by heat. Also, the quality of flaky V205 produced by this process can meet the requirements of GB3283--87. The total leaching rate of vanadium is 70%. Also, three types of wastes are easy to treat. The vanadium extraction process is better in relation to the aspect of environmental protection than the sodium method.展开更多
This study determined the optimal conditions required to obtain maximum vanadium extraction and examined the transition of mineral phases and vanadium speciation during the bioleaching process. Parameters including th...This study determined the optimal conditions required to obtain maximum vanadium extraction and examined the transition of mineral phases and vanadium speciation during the bioleaching process. Parameters including the initial p H value, initial Fe^(2+) concentration, solid load, and inoculum quantity were examined. The results revealed that 48.92 wt% of the vanadium was extracted through bioleaching under optimal conditions. Comparatively, the chemical leaching yield(H_2SO_4, pH 2.0) showed a slower and milder increase in vanadium yield. The vanadium bioleaching yield was 35.11 wt% greater than the chemical leaching yield. The Community Bureau of Reference(BCR) sequential extraction results revealed that 88.62 wt% of vanadium existed in the residual fraction. The bacteria substantially changed the distribution of the vanadium speciation during the leaching process, and the residual fraction decreased to 48.44 wt%. The X-ray diffraction(XRD) and Fourier transform infrared(FTIR) results provided evidence that the crystal lattice structure of muscovite was destroyed by the bacteria.展开更多
The low-grade vanadium-containing stone coal used in this experiment was collected from Wuxi Country, Chongqing City, China. The experiment focused on the vanadium recovery from roasted residue through optimizing the ...The low-grade vanadium-containing stone coal used in this experiment was collected from Wuxi Country, Chongqing City, China. The experiment focused on the vanadium recovery from roasted residue through optimizing the process conditions of an effective and environmentally-friendly technology, named calcified roasting-sulfuric acid leaching technology. By single-factor experiments and orthogonal experiments, the effects of roasting temperature, roasting time, sulfuric acid concentration and leaching time on the leaching ratio of vanadium were analyzed. The results showed that the leaching ratio of vanadium reached 85.5% under the proper technological conditions of roasting temperature=950℃, roasting time=4 h, 40% concentration of sulfuric acid and leaching time=6 h.展开更多
Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential...Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals.展开更多
The critical role of vanadium in metallurgy and the increasing commercialization of vanadium redox flow batteries have contributed to a rise in market demand for vanadium,emphasizing the need to ensure the sustainabil...The critical role of vanadium in metallurgy and the increasing commercialization of vanadium redox flow batteries have contributed to a rise in market demand for vanadium,emphasizing the need to ensure the sustainability of vanadium production.Converter vanadium slag and stone coal,generated during the smelting process of vanadium–titanium magnetite,serve as primary raw materials for vanadium extraction.This paper reviews the process mineralogy of converter vanadium slag and stone coal,encompassing the chemical and physical phase compositions of the raw materials and the state of vanadium occurrence.The aim is to establish a theoretical foundation for the mechanistic study of the vanadium extraction techniques and to provide a reference for the optimization of the process afterward.This paper systematically summarizes the current vanadium extraction technology from converter vanadium slag,covering roasting,direct leaching,sub-molten salt method,and the technology and research status of vanadium extraction from stone coal.Most importantly,it identifies key issues in the current vanadium extraction techniques and challenges faced in actual production,based on the analysis of the current vanadium extraction process and mechanism research.The forward feasibility and prospects for the development of vanadium extraction technology are outlined.展开更多
基金financially supported by the Research Project from the Chinese Ministry of Education (No. 213025A)
文摘Experiments comparing microwave blank roasting and conventional blank roasting for typical vanadium-bearing stone coal from Hubei Province in central China, in which vanadium is present in muscovite, were conducted to investigate the effects of roasting tempera- ture, roasting time, H2SO4 concentration, and leaching time on vanadium extraction. The results show that the vanadium leaching efficiency is 84% when the sample is roasted at 800℃ for 30 min by microwave irradiation and the H2SO4 concentration, liquid/solid ratio, leaching temperature, and leaching time are set as 20vo1%, 1.5:1 mL.g-1, 95℃, and 8 h, respectively. However, the vanadium leaching efficiency achieved for the sample subjected to conventional roasting at 900℃ for 60 min is just 71% under the same leaching conditions. Scanning electron microscopy (SEM) analysis shows that the microwave roasted samples contain more cracks and that the particles are more porous compared to the conventionally roasted samples. According to the results of X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) analyses, neither of these roasting methods could completely destroy the mica lattice structure under the experimental conditions; however, both methods deformed the muscovite structure and facilitated the leaching process. Comparing with conventional roasting, microwave roasting causes a greater deformation of the mineral structure at a lower temperature for a shorter roasting time.
基金Project(2006AA06Z130)supported by the High-tech Research and Development Program of ChinaProject(50874053)supported by the National Natural Science Foundation of ChinaProject(2007GA010)supported by Science and Technology Bureau of Yunnan Province,China
文摘Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various determination methods. The effects of leaching time,leaching temperature,leaching agent concentration,leaching L/S ratio,granularity of material,additive consumption were investigated based on the mineralogy.The results show that under the conditions of leaching time of 3-4 h, temperature of 150℃,sulfuric acid consumption of 25%?30%,ratio of liquid to solid of 1.2:1,the granularity less than 0.074 mm, additive consumption of 3%-5%,and oxygen pressure of 1.2 MPa,and the vanadium leaching rate can be more than 92%by the method of two-step pressurized acid leaching.The powdery V2O5 product with 99.52%in V2O5 content is obtained by the flowsheet of acid recovery,removing iron by reduction process,solvent extraction,precipitating vanadium with ammonium water,and pyrolysis from the stone-coal oxygen pressure acid-leaching solution.The total recovery efficiency of vanadium is above 85%,which is more than 20%higher than that obtained in the conventional process.Furthermore,the new process does not cause air pollution since no HCl or Cl2 is released by calcination of the raw material.
基金This work was financially supported by the Science Foundation of Central South University (No.76112037)the Postdoctoral Science Foundation of Central South University.
文摘The extraction technology of vanadium from stone coal by means of no-salt-roasting and dilute acid solution leaching treatment has the advantages of low pollution, low investment, as well as high vanadium leaching efficiency, which makes it the best technology for extending application. In the present study, the effects of vanadium occurrence state in stone coal, roasting temperature and additive agent on the leaching efficiency of vanadium were studied. The results indicate that the effect of vanadium occurrence state on the extracting vanadium technology is obvious. If the vanadium component in stone coal existed in amorphous phase form, this type of stone coal can be treated by no-slat-roasting and dilute acid solution leaching technology; while the vanadium-bearing crystalline phase existed in stone coal, the roasting additive must be added to destroy this crystalline form so as to acquire high vanadium leaching rate.
文摘A new process of extracting vanadium from the stone coal vanadium ore in Fangshankou, Dtmhuang area of Gansu Province, China was introduced. Various leaching experiments were carried out, and the results show that the vanadium ore in Fangshankou is difficult to process due to its high consumption of acid and the high leaching rate of impurities. However, the leaching rate can be up to 80% and the content of V2O5 in the residue can be between 0.22%-0.25% in the process of ore fme grinding→oxidation roasting→mixing and ripening→aqueous leaching→P2O4 solvent extraction→sulfuric acid stripping→oxidation and precipitation→decomposition by heat. Also, the quality of flaky V205 produced by this process can meet the requirements of GB3283--87. The total leaching rate of vanadium is 70%. Also, three types of wastes are easy to treat. The vanadium extraction process is better in relation to the aspect of environmental protection than the sodium method.
基金financially supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China (No. 2015ZX07205003)
文摘This study determined the optimal conditions required to obtain maximum vanadium extraction and examined the transition of mineral phases and vanadium speciation during the bioleaching process. Parameters including the initial p H value, initial Fe^(2+) concentration, solid load, and inoculum quantity were examined. The results revealed that 48.92 wt% of the vanadium was extracted through bioleaching under optimal conditions. Comparatively, the chemical leaching yield(H_2SO_4, pH 2.0) showed a slower and milder increase in vanadium yield. The vanadium bioleaching yield was 35.11 wt% greater than the chemical leaching yield. The Community Bureau of Reference(BCR) sequential extraction results revealed that 88.62 wt% of vanadium existed in the residual fraction. The bacteria substantially changed the distribution of the vanadium speciation during the leaching process, and the residual fraction decreased to 48.44 wt%. The X-ray diffraction(XRD) and Fourier transform infrared(FTIR) results provided evidence that the crystal lattice structure of muscovite was destroyed by the bacteria.
基金the Scientific Research Foundation of State Key Lab.of Coal Mine Disaster Dynamics and Control(2011AD105827-MS201206)Scientific&Technologic Program for the Bureau of Land Resources and Housing Management of Chongqing
文摘The low-grade vanadium-containing stone coal used in this experiment was collected from Wuxi Country, Chongqing City, China. The experiment focused on the vanadium recovery from roasted residue through optimizing the process conditions of an effective and environmentally-friendly technology, named calcified roasting-sulfuric acid leaching technology. By single-factor experiments and orthogonal experiments, the effects of roasting temperature, roasting time, sulfuric acid concentration and leaching time on the leaching ratio of vanadium were analyzed. The results showed that the leaching ratio of vanadium reached 85.5% under the proper technological conditions of roasting temperature=950℃, roasting time=4 h, 40% concentration of sulfuric acid and leaching time=6 h.
基金financially supported by the National Natural Science Foundation of China, China (Nos. 52274252 and 51874047)the Special Fund for the Construction of Innovative Provinces in Hunan Province, China (No. 2020RC3038)the Changsha City Fund for Distinguished and Innovative Young Scholars, China (No. kq1802007)。
文摘Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals.
基金supported by the National Natural Science Foundation of China(Nos.51774140,82204604 and 22304055)Hebei Province High-end Iron and Steel Metallurgy Joint Fund Project(No.E2021209147)+4 种基金Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)the Natural Science Foundation of Hebei Province(No.E2022209158)the Science and Technology Planning Project of Hebei Province(No.23564101D)the Key Research Project of North China University of Science and Technology(No.ZD-ST-202308)the Operation Expenses for Universities’Basic Scientific Research of Hebei Province(No.JQN2021018)。
文摘The critical role of vanadium in metallurgy and the increasing commercialization of vanadium redox flow batteries have contributed to a rise in market demand for vanadium,emphasizing the need to ensure the sustainability of vanadium production.Converter vanadium slag and stone coal,generated during the smelting process of vanadium–titanium magnetite,serve as primary raw materials for vanadium extraction.This paper reviews the process mineralogy of converter vanadium slag and stone coal,encompassing the chemical and physical phase compositions of the raw materials and the state of vanadium occurrence.The aim is to establish a theoretical foundation for the mechanistic study of the vanadium extraction techniques and to provide a reference for the optimization of the process afterward.This paper systematically summarizes the current vanadium extraction technology from converter vanadium slag,covering roasting,direct leaching,sub-molten salt method,and the technology and research status of vanadium extraction from stone coal.Most importantly,it identifies key issues in the current vanadium extraction techniques and challenges faced in actual production,based on the analysis of the current vanadium extraction process and mechanism research.The forward feasibility and prospects for the development of vanadium extraction technology are outlined.