Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is suppos...Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries.展开更多
The effect of vanadium content on the microstructure and hydrogen absorption/desorption properties in Ti-V-Cr alloys was studied. The results show that with the increase of vanadium content from 5at.%, 10at.% to 35at....The effect of vanadium content on the microstructure and hydrogen absorption/desorption properties in Ti-V-Cr alloys was studied. The results show that with the increase of vanadium content from 5at.%, 10at.% to 35at.%, the hydrogen absorption capacity increases gradually from 1.14wt.%, 1.57wt.% to 2.84wt.%, and the hydrogen desorption capacity also increase from 0.43, 0.64, to 1.59. This indicates that the alloy with 35at.% vanadium content has the most optimum hydrogen storage capacity among these alloys. The microstructure observation also indicates that the alloy with 35at.% vanadium turns to be the single-phase alloy of the BCC solid solution. Furthermore, with the increase of vanadium content the pressure plateau becomes more distinguishing and shifts to lower pressure level gradually. The kinetics of hydrogen absorption was also found to be dependent with the vanadium content in these discussed alloys.展开更多
Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy c...Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy catalysts.Comparative and systematic studies have been carried out on the morphology,structural characteristics and graphitic crystallinity of these CNOs products.Furthermore,the electrochemical hydrogen storage properties of three types of CNOs have been investigated.Measurements show that the Ni@CNOs have the highest discharge capacity of 387.2 mAh/g,coiTesponding to a hydrogen storage of 1.42%.This comparison study shows the advantages of each catalyst in the growth of CNOs.enabling the controllable synthesis and tuning the properties of CNOs by mediating different metals and their alloy for using in the fuel cell system.展开更多
Efficient catalysts enable MgH2 with superior hydrogen storage performance.Herein,we successfully synthesized a catalyst composed of Ce and Ni (i.e.CeNi_(5) alloy) with splendid catalytic action for boosting the hydro...Efficient catalysts enable MgH2 with superior hydrogen storage performance.Herein,we successfully synthesized a catalyst composed of Ce and Ni (i.e.CeNi_(5) alloy) with splendid catalytic action for boosting the hydrogen storage property of magnesium hydride (MgH_(2))The MgH2–5wt%CeNi_(5) composite’s initial hydrogen release temperature was reduced to 174℃ and approximately 6.4wt%H_(2) was released at 275℃ within 10 min.Besides,the dehydrogenation enthalpy of MgH_(2) was slightly decreased by adding CeNi_(5).For hydrogenation,the fully dehydrogenated sample absorbed 4.8wt%H_(2) at a low temperature of 175℃.The hydrogenation apparent activation energy was decreased from(73.60±1.79) to (46.12±7.33) kJ/mol.Microstructure analysis revealed that Mg_(2)Ni/Mg_(2)NiH_(4) and CeH_(2.73) were formed during the process of hydrogen absorption and desorption,exerted combined“Gateway”and“Spillover”effects to reduce the operating temperature and improve the hydrogen storage kinetics of MgH_(2).Our work provides an example of merging“Gateway”and“Spillover”effects in one catalyst and may shed light on designing novel highly-effective catalysts for MgH_(2) in near future.展开更多
The effect of Ti content on the hydrogen storage properties of Zr1-xTixMn2 Ce0.015(x = 0,0.2,0.3,0.5) alloys was studied by X-ray diffraction,scanning electron microscopy and pressure-composition(p-c) isotherm mea...The effect of Ti content on the hydrogen storage properties of Zr1-xTixMn2 Ce0.015(x = 0,0.2,0.3,0.5) alloys was studied by X-ray diffraction,scanning electron microscopy and pressure-composition(p-c) isotherm measurement.All of the alloys mainly consist of C14-type Laves and CeO2 phases.As the Ti content increases,the lattice parameters of the Laves phase decrease and the unit cell shrinks anisotropically,the total hydrogen absorption capacity decreases but the reversible hydrogen desorption capacity of the alloys increases,and the equilibrium pressure of the alloys increases but the plateau becomes sloping.The changes of hydrogen storage properties of Zr1-xTixMn2 Ce0.015 alloys are related to the differences in both atomic radius and hydrogen affinity between Ti and Zr elements.展开更多
MgTixNi (x = 0, 0.1, and 0.2) alloys were successfully prepared by mechanical alloying (MA), and the influence of milling time on the electrochemical characteristics of the electrodes was discussed. MgTixNi alloys...MgTixNi (x = 0, 0.1, and 0.2) alloys were successfully prepared by mechanical alloying (MA), and the influence of milling time on the electrochemical characteristics of the electrodes was discussed. MgTixNi alloys after 90 h milling displayed the best electrochemical performance The X-ray diffraction patterns showed that the alloy ball-milled for 90 h was amorphous with a widened diffraction peak. The charge-discharge tests indicated that these alloys had good electrochemical activation properties, and the MgTi0.2Ni alloy electrode exhibited the best cycle performance. The initial discharge capacity of the MgTi0.2Ni alloy reached up to 401.1 mAh·g^-1, and the retention rate of capacity was 31.0% after 30 cycles, much higher than that of MgNi (17.3%). The Tafel polarization curves revealed that Ti addition could enhance the anticorrosion performance of these alloys in alkali solution, which was responsible for the ameliorated cyclic stability of these alloy electrodes.展开更多
The improvement of hydrogen storage materials is a key issue for storage and delivery of hydrogen energy before its potential can be realized. As hydrogen storage media, rare-earth hydrogen storage materials have been...The improvement of hydrogen storage materials is a key issue for storage and delivery of hydrogen energy before its potential can be realized. As hydrogen storage media, rare-earth hydrogen storage materials have been systematically studied in order to improve storage capacity, kinetics, thermodynamics and electrochemical performance. In this review, we focus on recent research progress of gaseous sorption and electrochemical hydrogen storage properties of rare-earth alloys and highlight their commercial applications including hydrogen storage tanks and nickel metal hydride batteries. Furthermore, development trend and prospective of rare-earth hydrogen storage materials are discussed.展开更多
基金financially supported by the Natural Science Foundation of Hebei Province(Nos.E2019203414,E2020203081 and E2019203161)the National Natural Science Foundation of China(Nos.51701175 and 51971197)+1 种基金the Innovation Fund for the Graduate Students of Hebei Province(No.CXZZBS2020062)the Doctoral Fund of Yanshan University(No.BL19031)
文摘Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries.
基金This work was financially supported by the Natural Science Foundation of Beijing (No.2042015) and the National Natural Science Foundation of China (No.50571017).
文摘The effect of vanadium content on the microstructure and hydrogen absorption/desorption properties in Ti-V-Cr alloys was studied. The results show that with the increase of vanadium content from 5at.%, 10at.% to 35at.%, the hydrogen absorption capacity increases gradually from 1.14wt.%, 1.57wt.% to 2.84wt.%, and the hydrogen desorption capacity also increase from 0.43, 0.64, to 1.59. This indicates that the alloy with 35at.% vanadium content has the most optimum hydrogen storage capacity among these alloys. The microstructure observation also indicates that the alloy with 35at.% vanadium turns to be the single-phase alloy of the BCC solid solution. Furthermore, with the increase of vanadium content the pressure plateau becomes more distinguishing and shifts to lower pressure level gradually. The kinetics of hydrogen absorption was also found to be dependent with the vanadium content in these discussed alloys.
基金supported by the National Natural Science Foundation of China(51272173,51002188)the National Basic Research Program of China(2010CB934703)Tianjin Municipal Science and Technology Commission(12ZCZDGX00800)
文摘Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy catalysts.Comparative and systematic studies have been carried out on the morphology,structural characteristics and graphitic crystallinity of these CNOs products.Furthermore,the electrochemical hydrogen storage properties of three types of CNOs have been investigated.Measurements show that the Ni@CNOs have the highest discharge capacity of 387.2 mAh/g,coiTesponding to a hydrogen storage of 1.42%.This comparison study shows the advantages of each catalyst in the growth of CNOs.enabling the controllable synthesis and tuning the properties of CNOs by mediating different metals and their alloy for using in the fuel cell system.
基金financially supported by the National Natural Science Foundation of China(No.51801078)。
文摘Efficient catalysts enable MgH2 with superior hydrogen storage performance.Herein,we successfully synthesized a catalyst composed of Ce and Ni (i.e.CeNi_(5) alloy) with splendid catalytic action for boosting the hydrogen storage property of magnesium hydride (MgH_(2))The MgH2–5wt%CeNi_(5) composite’s initial hydrogen release temperature was reduced to 174℃ and approximately 6.4wt%H_(2) was released at 275℃ within 10 min.Besides,the dehydrogenation enthalpy of MgH_(2) was slightly decreased by adding CeNi_(5).For hydrogenation,the fully dehydrogenated sample absorbed 4.8wt%H_(2) at a low temperature of 175℃.The hydrogenation apparent activation energy was decreased from(73.60±1.79) to (46.12±7.33) kJ/mol.Microstructure analysis revealed that Mg_(2)Ni/Mg_(2)NiH_(4) and CeH_(2.73) were formed during the process of hydrogen absorption and desorption,exerted combined“Gateway”and“Spillover”effects to reduce the operating temperature and improve the hydrogen storage kinetics of MgH_(2).Our work provides an example of merging“Gateway”and“Spillover”effects in one catalyst and may shed light on designing novel highly-effective catalysts for MgH_(2) in near future.
文摘The effect of Ti content on the hydrogen storage properties of Zr1-xTixMn2 Ce0.015(x = 0,0.2,0.3,0.5) alloys was studied by X-ray diffraction,scanning electron microscopy and pressure-composition(p-c) isotherm measurement.All of the alloys mainly consist of C14-type Laves and CeO2 phases.As the Ti content increases,the lattice parameters of the Laves phase decrease and the unit cell shrinks anisotropically,the total hydrogen absorption capacity decreases but the reversible hydrogen desorption capacity of the alloys increases,and the equilibrium pressure of the alloys increases but the plateau becomes sloping.The changes of hydrogen storage properties of Zr1-xTixMn2 Ce0.015 alloys are related to the differences in both atomic radius and hydrogen affinity between Ti and Zr elements.
基金supported by the National Natural Science Foundation of China(No.20576142)
文摘MgTixNi (x = 0, 0.1, and 0.2) alloys were successfully prepared by mechanical alloying (MA), and the influence of milling time on the electrochemical characteristics of the electrodes was discussed. MgTixNi alloys after 90 h milling displayed the best electrochemical performance The X-ray diffraction patterns showed that the alloy ball-milled for 90 h was amorphous with a widened diffraction peak. The charge-discharge tests indicated that these alloys had good electrochemical activation properties, and the MgTi0.2Ni alloy electrode exhibited the best cycle performance. The initial discharge capacity of the MgTi0.2Ni alloy reached up to 401.1 mAh·g^-1, and the retention rate of capacity was 31.0% after 30 cycles, much higher than that of MgNi (17.3%). The Tafel polarization curves revealed that Ti addition could enhance the anticorrosion performance of these alloys in alkali solution, which was responsible for the ameliorated cyclic stability of these alloy electrodes.
基金supported by the National Natural Science Foundation of China(Grant No.21521092)the Major Scientific and Technological Developing Project of Changchun City(Grant No.17SS013)+1 种基金the Scientific and Technological Developing Project of Jilin Province(Grant No.20180201098GX)the Natural Science Foundation of Jiangsu Province(Grant No.BK20141174)
文摘The improvement of hydrogen storage materials is a key issue for storage and delivery of hydrogen energy before its potential can be realized. As hydrogen storage media, rare-earth hydrogen storage materials have been systematically studied in order to improve storage capacity, kinetics, thermodynamics and electrochemical performance. In this review, we focus on recent research progress of gaseous sorption and electrochemical hydrogen storage properties of rare-earth alloys and highlight their commercial applications including hydrogen storage tanks and nickel metal hydride batteries. Furthermore, development trend and prospective of rare-earth hydrogen storage materials are discussed.