A compared investigation was made on the microstructure and mechanical properties of continuous casting square blanks of BNbRE and U71Mn heavy rail steels having eutectoid composition. The variation of solidified stru...A compared investigation was made on the microstructure and mechanical properties of continuous casting square blanks of BNbRE and U71Mn heavy rail steels having eutectoid composition. The variation of solidified structure of the square blanks was demonstrated by measuring hardness. The observation to the structure and inclusions in the head, waist and base of the hot-rolled rails of the test steels were carried out with optical microscope and SEM. It is found that the casting blanks of both tested steels compose of three areas with constant hardness and three hardness varying areas, and there is considerable P-eutectic structure in the blank of the U71Mn steel. The distribution of the inclusions in the UT1Mn steel rail is mainly oxides in both rail head and rail base, and is mainly MnS in the waist of the rail. There has strong effect of the addition of rare earth elements on them. The discussion on these results was made.展开更多
The effects of different contents of vanadium(V)(0.1,0.2,and 0.3 wt%)on the microstructure evolution and mechanical properties of 718H steel were investigated.The precipitate was characterized by means of atom probe t...The effects of different contents of vanadium(V)(0.1,0.2,and 0.3 wt%)on the microstructure evolution and mechanical properties of 718H steel were investigated.The precipitate was characterized by means of atom probe tomography(APT)and bright-field transmission electron microscopy(TEM).The increase in V content has great benefits for strength,but has an adverse effect on impact toughness.The strength increase can be attributed to the influence of V addition on dislocation density,misorientation gradient,and fine scale MC precipitates.Precipitation strengthening mainly contributes to the V-added steel by analyzing various strengthening mechanisms.However,fine scale MC precipitates can pin dislocation leading to a decrease in its mobility.A large number of immovable dislocations will increase the dislocation accumulation,internal stress and brittle cracking,resulting in a gradual decrease in impact toughness with the V addition.In addition,compared with V-free steel,the dissolved V content in austenite decreases the grain boundary energy and inhibits the diffusion of the C atoms,ultimately reducing the transformation range of pearlite(P).展开更多
The effect of vanadium (V) addition on the mechanical properties of a Cr-Ni-Mo-Cu-Ti stainless steel was studied and its influence on microstructural changes was also investigated. Results indicate that the structur...The effect of vanadium (V) addition on the mechanical properties of a Cr-Ni-Mo-Cu-Ti stainless steel was studied and its influence on microstructural changes was also investigated. Results indicate that the structure of the solution-treated specimens mainly comprises of austenite-martensite, and adding V leads to the formation of a consid erable amount of ferrite. Under this condition, austenite phase is not mechanically stable, and transforms to martensite by plastic deformation. The addition of 0.5% - 1.0% (in mass percent) of V increases the hardness and the strength of the 80% cold rolled and aged steel, without any effect on ductility. Improvement in mechanical properties is presumably attributed to the formation of a small amount of ferrite in the primary structure, and the formation of certain precipitates is accelerated by the addition of V during aging. By contrast, excessive V decreases the strength and ductility simultaneously. This is due to the strong effect of ferrite formation compared to the beneficial effect of precipitation. The loss of ductility caused by adding higher amount of V is due to the formation of ferrite phases which in turn are suitable nucleation sites for crack propagation.展开更多
The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-...The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-beam steel sample is consisted of ferrite, pearlite and a small amount of granular bainites as well as fine and dispersive V(C,N) precipitates. The microstructure of the water-cooled steel sample is consisted of ferrite and bainite as well as a small amount of fine pearlites. The microstructure of the water-cooled sample is finer than that of the air-cooled sample with the average intercept size of the surface grains reaching to 3.5 gna. The finish rolling temperature of the thin-walled high strength H-beam steel is in the range of 750 ~C-850 ~C. The lower the finish rolling temperature and the faster the cooling rate, the finer the ferrite grains, the volume fraction of bainite is increased through water cooling process. Grain refinement strengthening and precipitation strengthening are used as major strengthening means to develop 550 MPa grade lightweight high strength thin- walled H-beam steel. Vanadium partially soluted in the matrix and contributes to the solution strengthening. The 550 MPa grade high-strength thin-walled H-beam steel could be developed by direct air cooling after hot rolling to fully meet the requirements of the target properties.展开更多
The mechanisms of RE in clean BNbRE steel were studied by means of experimental measurement, microstructural observation and theoretical analysis. For BNbRE steel, the state and the content of RE were measured, and th...The mechanisms of RE in clean BNbRE steel were studied by means of experimental measurement, microstructural observation and theoretical analysis. For BNbRE steel, the state and the content of RE were measured, and the effects and the mechanisms of RE on sulfide inclusions, microstructure and properties of steel were determined. On the condition of increasing the cleanliness of steel, the mechanisms of RE in steel were changed to certain degree. Small amount of RE has the effect of cleaning, modifying inclusions and alloying in clean steel, too. With increasing the cleanliness of BNbRE steel, addition of RE should be decreased properly. Under experimental conditions, the optimum addition of RE is -0.01 % (mass fraction) for clean BNbRE steel, while RE can evidently improve plasticity and impact toughness of BNbRE steel.展开更多
Electron beam welding experiments of titanium alloys with different vanadium content to stainless steel,as well as alpha titanium to stainless steel using vanadium sheets as filler metal and transition portion were ca...Electron beam welding experiments of titanium alloys with different vanadium content to stainless steel,as well as alpha titanium to stainless steel using vanadium sheets as filler metal and transition portion were carried out.Microstructures of the joints were examined by scanning electron microscope.The properties were evaluated by microhardness and tensile strength.It was shown that electron beam welding is not feasible due to the brittle Ti-Fe intermetallics with high hardness.Increase of vanadium content in base metal can restrain but can't avoid the formation of cracks.When vanadium content was too large,the joint was embrittled by FeTi compound with supersaturated V and also cracked after welding.Crack free joint was achieved by using vanadium transition portion which can prevent the contact of Ti and Fe elements.However,the formation of brittle σ intermetallics reduced the tensile strength of the joint,only up to 134MPa.展开更多
An ultrafine-grained(UFG) low-carbon medium-manganese steel was fabricated by the heavily warm rolling(HWR) and subsequent quenching, and the effects of annealing temperatures on microstructure and mechanical properti...An ultrafine-grained(UFG) low-carbon medium-manganese steel was fabricated by the heavily warm rolling(HWR) and subsequent quenching, and the effects of annealing temperatures on microstructure and mechanical properties of the UFG HWRed steel were investigated. The results show that the HWRed steel exhibits simultaneous improvements in strength,uniform elongation and work hardening, which is mainly attributed to the refinement of martensitic microstructures. The HWRed steels comprise only a-phase when annealing at lower temperatures below to 550 °C and at higher temperatures above to 700 °C. Whereas, UFG c-austenite is formed by reverse transformation when the HWRed steel was annealed at intermediate temperatures from 550 to 700 °C and the volume fraction increases with increasing annealing temperatures,consequently resulting in a dramatic increase in ductility of the annealed HWRed steels. It was found that the transformed UFG austenite and ferrite remained ~500 nm and ~800 nm in size when the HWRed steel was annealed at 650 and700 °C for 1 h, respectively, showing an excellent thermal stability. Moreover, the HWRed steel annealed at 650 °C exhibits high strength-ductility combinations with a yield strength of 906 MPa, ultimate tensile strength(UTS) of1011 MPa, total elongation(TEL) of 51% and product of strength and elongation(PSE: UTS 9 TEL) of 52 GPa%. It is believed that these excellent comprehensive mechanical properties are closely associated with the UFG austenite formation by reverse transformation and principally attributed to the transformation-induced plasticity(TRIP) effect.展开更多
The microstructures and mechanical properties of ferrite-based lightweight steel with different compositions were investigated by tensile test,scanning electron microscopy(SEM),transmission electron microscopy(TEM...The microstructures and mechanical properties of ferrite-based lightweight steel with different compositions were investigated by tensile test,scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD)and thermodynamic calculation(TC).It was shown that the ferrite-based lightweight steels with 5wt.%or 8wt.%Al were basically composed of ferrite,austenite andκ-carbide.As the annealing temperature increased,the content of the austenite in the steel gradually increased,while theκ-carbide gradually decomposed and finally disappeared.The mechanical properties of the steel with 5wt.%Al and 2wt.%Cr,composed of ferrite and Cr7C3carbide at different annealing temperatures,were significantly inferior to those of others.The steel containing 5wt.%Al,annealed at 820°C for 50sthen rapidly cooled to 400°C and held for 180s,can obtain the best product of strength and elongation(PSE)of 31242MPa·%.The austenite stability of the steel is better,and its PSE is higher.In addition,the steel with higher PSE has a more stable instantaneous strain hardening exponent(n value),which is mainly caused by the effect of transformation induced plasticity(TRIP).When theκ-carbide or Cr7C3carbide existed in the microstructure of the steel,there was an obvious yield plateau in the tensile curve,while its PSE decreased significantly.展开更多
The microstructure and mechanical properties of a V-microalloyed Al-containing medium-Mn steel after hot rolling and intercritical annealing(IA)are explored.The tested steel exhibits a fne multiphase microstructure co...The microstructure and mechanical properties of a V-microalloyed Al-containing medium-Mn steel after hot rolling and intercritical annealing(IA)are explored.The tested steel exhibits a fne multiphase microstructure consisting of bimodal sizes of ferrite and retained austenite plus considerable amount of fne VC and/or M3C precipitates.Physical-chemical phase analysis shows that about 71.0%of the total V is in VC phase and more than 93%of VC particles is less than 5 nm.The calculated precipitation strengthening values of VC are^347 and^234 MPa for the specimens intercritically annealed at 625 and 750℃,respectively.An excellent combination of strength and ductility as high as^50 GPa%and yield strength(YS)of 890 MPa was obtained at intercritical temperature(TIA)of 725℃,although it does not correspond to the maximum precipitation strengthening of VC phase.Therefore,it is suggested that an optimization of TIA corresponding to both excellent combination of strength and ductility and high YS should be further explored through chemical composition and IA process optimization.展开更多
文摘A compared investigation was made on the microstructure and mechanical properties of continuous casting square blanks of BNbRE and U71Mn heavy rail steels having eutectoid composition. The variation of solidified structure of the square blanks was demonstrated by measuring hardness. The observation to the structure and inclusions in the head, waist and base of the hot-rolled rails of the test steels were carried out with optical microscope and SEM. It is found that the casting blanks of both tested steels compose of three areas with constant hardness and three hardness varying areas, and there is considerable P-eutectic structure in the blank of the U71Mn steel. The distribution of the inclusions in the UT1Mn steel rail is mainly oxides in both rail head and rail base, and is mainly MnS in the waist of the rail. There has strong effect of the addition of rare earth elements on them. The discussion on these results was made.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFB0300401)supported by Cooperation Program of Hubei province and Chinese Academy of Sciences (The Research and Development of Key Technologies for Special Steel of Homogeneous High Performance)
文摘The effects of different contents of vanadium(V)(0.1,0.2,and 0.3 wt%)on the microstructure evolution and mechanical properties of 718H steel were investigated.The precipitate was characterized by means of atom probe tomography(APT)and bright-field transmission electron microscopy(TEM).The increase in V content has great benefits for strength,but has an adverse effect on impact toughness.The strength increase can be attributed to the influence of V addition on dislocation density,misorientation gradient,and fine scale MC precipitates.Precipitation strengthening mainly contributes to the V-added steel by analyzing various strengthening mechanisms.However,fine scale MC precipitates can pin dislocation leading to a decrease in its mobility.A large number of immovable dislocations will increase the dislocation accumulation,internal stress and brittle cracking,resulting in a gradual decrease in impact toughness with the V addition.In addition,compared with V-free steel,the dissolved V content in austenite decreases the grain boundary energy and inhibits the diffusion of the C atoms,ultimately reducing the transformation range of pearlite(P).
文摘The effect of vanadium (V) addition on the mechanical properties of a Cr-Ni-Mo-Cu-Ti stainless steel was studied and its influence on microstructural changes was also investigated. Results indicate that the structure of the solution-treated specimens mainly comprises of austenite-martensite, and adding V leads to the formation of a consid erable amount of ferrite. Under this condition, austenite phase is not mechanically stable, and transforms to martensite by plastic deformation. The addition of 0.5% - 1.0% (in mass percent) of V increases the hardness and the strength of the 80% cold rolled and aged steel, without any effect on ductility. Improvement in mechanical properties is presumably attributed to the formation of a small amount of ferrite in the primary structure, and the formation of certain precipitates is accelerated by the addition of V during aging. By contrast, excessive V decreases the strength and ductility simultaneously. This is due to the strong effect of ferrite formation compared to the beneficial effect of precipitation. The loss of ductility caused by adding higher amount of V is due to the formation of ferrite phases which in turn are suitable nucleation sites for crack propagation.
基金Funded by the "11th Five" National Science and Technology Support Project(No.2006BAE03A13)
文摘The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-beam steel sample is consisted of ferrite, pearlite and a small amount of granular bainites as well as fine and dispersive V(C,N) precipitates. The microstructure of the water-cooled steel sample is consisted of ferrite and bainite as well as a small amount of fine pearlites. The microstructure of the water-cooled sample is finer than that of the air-cooled sample with the average intercept size of the surface grains reaching to 3.5 gna. The finish rolling temperature of the thin-walled high strength H-beam steel is in the range of 750 ~C-850 ~C. The lower the finish rolling temperature and the faster the cooling rate, the finer the ferrite grains, the volume fraction of bainite is increased through water cooling process. Grain refinement strengthening and precipitation strengthening are used as major strengthening means to develop 550 MPa grade lightweight high strength thin- walled H-beam steel. Vanadium partially soluted in the matrix and contributes to the solution strengthening. The 550 MPa grade high-strength thin-walled H-beam steel could be developed by direct air cooling after hot rolling to fully meet the requirements of the target properties.
基金Project supported bythe National Natural Science Fundation of China (50374029)
文摘The mechanisms of RE in clean BNbRE steel were studied by means of experimental measurement, microstructural observation and theoretical analysis. For BNbRE steel, the state and the content of RE were measured, and the effects and the mechanisms of RE on sulfide inclusions, microstructure and properties of steel were determined. On the condition of increasing the cleanliness of steel, the mechanisms of RE in steel were changed to certain degree. Small amount of RE has the effect of cleaning, modifying inclusions and alloying in clean steel, too. With increasing the cleanliness of BNbRE steel, addition of RE should be decreased properly. Under experimental conditions, the optimum addition of RE is -0.01 % (mass fraction) for clean BNbRE steel, while RE can evidently improve plasticity and impact toughness of BNbRE steel.
文摘Electron beam welding experiments of titanium alloys with different vanadium content to stainless steel,as well as alpha titanium to stainless steel using vanadium sheets as filler metal and transition portion were carried out.Microstructures of the joints were examined by scanning electron microscope.The properties were evaluated by microhardness and tensile strength.It was shown that electron beam welding is not feasible due to the brittle Ti-Fe intermetallics with high hardness.Increase of vanadium content in base metal can restrain but can't avoid the formation of cracks.When vanadium content was too large,the joint was embrittled by FeTi compound with supersaturated V and also cracked after welding.Crack free joint was achieved by using vanadium transition portion which can prevent the contact of Ti and Fe elements.However,the formation of brittle σ intermetallics reduced the tensile strength of the joint,only up to 134MPa.
基金financially supported by the National Major Science and Technology Project of China (No. 2014ZX07214-002)
文摘An ultrafine-grained(UFG) low-carbon medium-manganese steel was fabricated by the heavily warm rolling(HWR) and subsequent quenching, and the effects of annealing temperatures on microstructure and mechanical properties of the UFG HWRed steel were investigated. The results show that the HWRed steel exhibits simultaneous improvements in strength,uniform elongation and work hardening, which is mainly attributed to the refinement of martensitic microstructures. The HWRed steels comprise only a-phase when annealing at lower temperatures below to 550 °C and at higher temperatures above to 700 °C. Whereas, UFG c-austenite is formed by reverse transformation when the HWRed steel was annealed at intermediate temperatures from 550 to 700 °C and the volume fraction increases with increasing annealing temperatures,consequently resulting in a dramatic increase in ductility of the annealed HWRed steels. It was found that the transformed UFG austenite and ferrite remained ~500 nm and ~800 nm in size when the HWRed steel was annealed at 650 and700 °C for 1 h, respectively, showing an excellent thermal stability. Moreover, the HWRed steel annealed at 650 °C exhibits high strength-ductility combinations with a yield strength of 906 MPa, ultimate tensile strength(UTS) of1011 MPa, total elongation(TEL) of 51% and product of strength and elongation(PSE: UTS 9 TEL) of 52 GPa%. It is believed that these excellent comprehensive mechanical properties are closely associated with the UFG austenite formation by reverse transformation and principally attributed to the transformation-induced plasticity(TRIP) effect.
基金supported by the Shanghai Municipal Natural Science Foundation(Grant No.17ZR1410400)the Shanghai Municipal Science and Technology Commission(Grant Nos.15DZ2260300,15DZ2260301)
文摘The microstructures and mechanical properties of ferrite-based lightweight steel with different compositions were investigated by tensile test,scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD)and thermodynamic calculation(TC).It was shown that the ferrite-based lightweight steels with 5wt.%or 8wt.%Al were basically composed of ferrite,austenite andκ-carbide.As the annealing temperature increased,the content of the austenite in the steel gradually increased,while theκ-carbide gradually decomposed and finally disappeared.The mechanical properties of the steel with 5wt.%Al and 2wt.%Cr,composed of ferrite and Cr7C3carbide at different annealing temperatures,were significantly inferior to those of others.The steel containing 5wt.%Al,annealed at 820°C for 50sthen rapidly cooled to 400°C and held for 180s,can obtain the best product of strength and elongation(PSE)of 31242MPa·%.The austenite stability of the steel is better,and its PSE is higher.In addition,the steel with higher PSE has a more stable instantaneous strain hardening exponent(n value),which is mainly caused by the effect of transformation induced plasticity(TRIP).When theκ-carbide or Cr7C3carbide existed in the microstructure of the steel,there was an obvious yield plateau in the tensile curve,while its PSE decreased significantly.
基金This work was supported by the High-level Scientific Research Foundation for the Introduction of Talent of Beijing Jiaotong University(Grant No.M14RC00010).
文摘The microstructure and mechanical properties of a V-microalloyed Al-containing medium-Mn steel after hot rolling and intercritical annealing(IA)are explored.The tested steel exhibits a fne multiphase microstructure consisting of bimodal sizes of ferrite and retained austenite plus considerable amount of fne VC and/or M3C precipitates.Physical-chemical phase analysis shows that about 71.0%of the total V is in VC phase and more than 93%of VC particles is less than 5 nm.The calculated precipitation strengthening values of VC are^347 and^234 MPa for the specimens intercritically annealed at 625 and 750℃,respectively.An excellent combination of strength and ductility as high as^50 GPa%and yield strength(YS)of 890 MPa was obtained at intercritical temperature(TIA)of 725℃,although it does not correspond to the maximum precipitation strengthening of VC phase.Therefore,it is suggested that an optimization of TIA corresponding to both excellent combination of strength and ductility and high YS should be further explored through chemical composition and IA process optimization.