期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Bioleaching and biosorption behavior of vanadium-bearing stone coal by Bacillus mucilaginosus
1
作者 Yingbo Dong Shijia Chong Hai Lin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期283-292,共10页
The recovery of vanadium(V)from stone coal by bioleaching is a promising method.The bioleaching experiments and the biosorption experiments were carried out,aiming to explore the adsorption characteristics of Bacillus... The recovery of vanadium(V)from stone coal by bioleaching is a promising method.The bioleaching experiments and the biosorption experiments were carried out,aiming to explore the adsorption characteristics of Bacillus mucilaginosus(B.mucilaginosus)on the surface of vanadium-bearing stone coal,and the related mechanisms have been investigated.After bioleaching at 30℃ for 28 d,the cumulative leaching rate of V reached 60.2%.The biosorption of B.mucilaginosus on stone coal was affected by many factors.When the pH value of leaching system is 5.0,strong electrostatic attraction between bacteria and stone coal promoted biosorption.Bacteria in the logarithmic growth phase had mature and excellent biosorption properties.The initial bacterial concentration of 3.5×10^(8) CFU/mL was conducive to adhesion,with 38.9%adsorption rate and 3.6×10^(7) CFU/g adsorption quantity.The adsorption of B.mucilaginosus on the stone coal conformed to the Freundlich model and the pseudo-second-order kinetic model.Bacterial surface carried functional groups(-CH_(2),-CH_(3),-NH_(2),etc.),which were highly correlated with the adsorption behavior.In addition,biosorption changed the surface properties of stone coal,resulting in the isoelectric point(IEP)approaching the bacteria.The results could provide an effective reference for the adsorption laws of bacteria on minerals. 展开更多
关键词 Bacillus mucilaginosus vanadium-bearing stone coal BIOLEACHING BIOSORPTION
下载PDF
Synergetic strengthening mechanism of ultrasound combined with calcium fluoride towards vanadium extraction from low-grade vanadium-bearing shale 被引量:14
2
作者 Bo Chen Shenxu Bao Yimin Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第6期1095-1106,共12页
The effect and mechanism of ultrasound and CaF_(2) on vanadium leaching from vanadium-bearing shale were investigated systematically.In consideration of the enhancement for vanadium recovery,the combination of ultraso... The effect and mechanism of ultrasound and CaF_(2) on vanadium leaching from vanadium-bearing shale were investigated systematically.In consideration of the enhancement for vanadium recovery,the combination of ultrasound and CaF_(2)(66.28%) exerts more evident effects than ultrasound(26.97%) and CaF_(2)(60.35%) alone,demonstrating the synergetic effect of ultrasound and CaF_(2).Kinetic analysis manifests that the product layer diffusion controls vanadium leaching in ultrasound system without CaF_(2),however product layer diffusion and interfacial reaction is the rate-controlling step for vanadium leaching in other three leaching systems.The combination of ultrasound and CaF_(2) notably decreases the activation energy(E_(a)) from 62.03 to 27.61 kJ/mol,nevertheless individual CaF_(2) only reduces the E_(a) to 50.70 kj/mol.X-ray diffraction and fourier transform infrared spectrometer analyses show that the decomposition degree of the vanadium-bearing mica structure is the most significant in ultrasound and CaF_(2) system,proving the highest release degree of vanadium.Specific surface area and pore distribution combined with scanning electron microscope analyses reveal that the action of ultrasound and CaF_(2) would provide higher specific surface area,more abundant pores structure and cracks for the particles,which further prompts the rapid diffusion of H^(+),F^(-)and HF,and achieves the conspicuous improvement of vanadium leaching recovery. 展开更多
关键词 vanadium-bearing shale ULTRASOUND CaF_(2)addition Synergetic effect Leaching kinetics
下载PDF
Development of Intensified Technologies of Vanadium-Bearing Titanomagnetite Smelting 被引量:28
3
作者 FU Wei-guo WEN Yong-cai XIE Hong-en 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第4期7-10,18,共5页
It was very difficult for the smelting of vanadium-bearing titanomagnetite by blast furnace because the content of TiO2 of blast furnace slag could amount to 20%-25%.After long term development and continuous improvem... It was very difficult for the smelting of vanadium-bearing titanomagnetite by blast furnace because the content of TiO2 of blast furnace slag could amount to 20%-25%.After long term development and continuous improvement,special intensified smelting technologies for vanadium-bearing titanomagnetite by blast furnace were obtained and improved gradually.With the improvement of beneficiated material level and equipment level,smelting intensity has been increased gradually and the highest comprehensive smelting intensity reached 1.45 t/(m3·d).Technical-economic indexes of blast furnace have also been increased remarkably.The highest utilization coefficient exceeded 2.7 t/(m3·d)on the condition that the burden grade was only about 50%. 展开更多
关键词 vanadium-bearing titanomagnetite blast furnace smelting intensified technology
原文传递
Influences of Technological Parameters on Smelting-separation Process for Metallized Pellets of Vanadium-bearing Titanomagnetite Concentrates 被引量:11
4
作者 En-hui WU Rong ZHU +3 位作者 Shao-li YANG Lan MA Jun LI Jing HOU 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2016年第7期655-660,共6页
The smelting-separation process for metallized pellets of vanadium-bearing titanomagnetite concentrates was studied.The influences of smelting temperature,smelting time,and the basicity of the metallized pellet on van... The smelting-separation process for metallized pellets of vanadium-bearing titanomagnetite concentrates was studied.The influences of smelting temperature,smelting time,and the basicity of the metallized pellet on vanadium and iron recovery were investigated.The characteristics of titanium slag were analyzed using X-ray diffraction,energy dispersive spectroscopy,and mineralographic microscopic analysis.The results demonstrate that appropriate increases in smelting temperature and smelting time can improve the vanadium and iron recovery from metallized pellets and are beneficial for the slag-iron separation.Although increasing the basicity of the metallized pellet can considerably improve the vanadium and iron recovery,the TiO;grade of titanium slag was decreased.Under the optimal conditions,90.17% of vanadium and 92.98% of iron in the metallized pellet were recovered,and the TiO;grade of titanium slag was 55.01%.It was found that anosovite,augite,spinel,glassiness,and metallic iron were the main mineral phases of the titanium slag. 展开更多
关键词 metallized pellet smelting separation titanium slag vanadium vanadium-bearing titanomagnetite concentrate
原文传递
An Estimation of Component Activity of Vanadium-bearing Liquid Iron and Transition Temperature of Vanadium Oxidization Using MIVM 被引量:1
5
作者 Ya-yu LI Zhen-nan LIU Dong-ping TAO 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第7期557-565,共9页
The component activity of Mn in Fe-C-Mn system as well as the component activities of C and Si in Fe-C-Si system was predicted by applying the pseudo-multicomponent approach of the molecular interaction volume model ... The component activity of Mn in Fe-C-Mn system as well as the component activities of C and Si in Fe-C-Si system was predicted by applying the pseudo-multicomponent approach of the molecular interaction volume model (MIVM) and the Wagner interaction parameter formalism (WIPF) respectively. The average relative errors between the predicted values of MIVM and the experimental data for the three components were 4.5 0%, 17.0% and 13.0 %, respectively, and those between the calculation results of the WIPF and the experimental data were 18.0K for Mn, 9.0% for C and 27.0% for Si. The results indicated that the MIVM method could better predict the component activity of carbonaceous iron-based solution. Based on the data in an actual blowing process, the MIVM method was applied to predict the component activities of C and V as well as the transition temperature of vanadium oxidization (TTVO) in Fe-C-V-Si quaternary iron-based solution, and a comparative analysis of the predictions against the ex- perimental data was carried out, with their average relative errors being 24.0% for C, 7.3% for V and 1.0% for TTVO respectively. On that basis, the TTVO at Panzhihua Iron and Steel (Group) Co. , Ltd. was estimated by the MIVM method and an expression that the TTVO changed with composition and temperature of iron solutions was obtained by multiple linear regression method. The research results showed that the estimated values were in good agree- ment with the practical data. 展开更多
关键词 thermodynamic model molecular interaction volume model ACTIVITY vanadium-bearing liquid iron transition temperature
原文传递
Precipitates and Hydrogen Permeation Behavior in Vanadium-Bearing Microalloyed Low Carbon Steel
6
作者 XU Chun,LI Xiao-jie,SHEN Da-guang (Material Engineering Department,Shanghai Institute of Technology,Shanghai 200233,China) 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第S1期290-295,共6页
The precipitates and hydrogen permeation behavior were studied in the low carbon steel for enameling.During the preparation of samples,Ti containing and Ti free in vanadium-bearing microalloyed low carbon steel heatin... The precipitates and hydrogen permeation behavior were studied in the low carbon steel for enameling.During the preparation of samples,Ti containing and Ti free in vanadium-bearing microalloyed low carbon steel heating at 750℃ for 3 h,were adopted after cold-rolling.It was found that the a large number of fine VC,TiC,TiN and Ti 4 C 2 S 2 precipitates were in samples of Vanadium-bearing microalloyed low carbon steel with Ti element.And fine VC,Fe 3 C and MnS precipitates were in steels without Ti element.So the numbers of precipitates in the former is more bigger than the later.The activation energies for hydrogen diffusion in both samples are 26.5 and 23.7 kJ/mol,respectively.But at 25℃,the effective diffusion coefficients in the samples for Ti containing and Ti free in Vanadium-bearing microalloyed low carbon steel were measured as 2.71×10-6 and 4.22×10-6 cm 2 /s,respectively.No fishscaling defect occurred in the former and heavy fishscaling defect in the later. 展开更多
关键词 PRECIPITATE hydrogen permeability enameling vanadium-bearing microalloyed low carbon steel
原文传递
Influence of phosphorus on iron-based friction material prepared directly vanadium-bearing titanomagnetite concentrates
7
作者 Yan-yan Zhang Ke-qin Feng +2 位作者 Yue Shui Si-tan Chen Yan-fang Liu 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2021年第6期669-678,共10页
In situ selective carbothermic reactions and vacuum sintering were used to prepare iron-based friction material directly vanadium-bearing titanomagnetite concentrates.Effects of phosphorus addition(0.05–0.20 wt.%)on ... In situ selective carbothermic reactions and vacuum sintering were used to prepare iron-based friction material directly vanadium-bearing titanomagnetite concentrates.Effects of phosphorus addition(0.05–0.20 wt.%)on the microstructure and properties of iron-based friction material were investigated.The results show that the addition of phosphorus improves the microstructure and properties of the material significantly.When phosphorus addition increases to 0.15 wt.%,the sintering densification is promoted and the number of lamellar pearlites increases.Therefore,the relative density,hardness and tribological properties of the material are greatly enhanced.Particularly,the friction coefficient decreases 0.58 to 0.43,and the wear rate reduces 1.829×10^(–7) to 0.694×10^(–7)cm^(3)J^(-1).The dominant wear mechanism of the material changes severe abrasive wear to mild oxidation wear accordingly.However,when phosphorus addition exceeds 0.15 wt.%,the matrix continuity and tribological properties of the material are deteriorated.Comprehensively,the optimal addition of phosphorus in the iron-based friction material is 0.15 wt.%. 展开更多
关键词 vanadium-bearing titanomagnetite concentrate Iron-based friction material Tribological behavior PHOSPHORUS
原文传递
Softening–melting–dripping characteristics and evolution mechanism of vanadium-bearing titanomagnetite carbon composite briquette used as novel blast furnace burden
8
作者 Wei Zhao Man-sheng Chu +2 位作者 Hong-wei Guo Zheng-gen Liu Bing-ji Yan 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2021年第9期1082-1094,共13页
Vanadium-bearing titanomagnetite carbon composite briquette(VTM-CCB)was proposed as an innovative and promising blast furnace burden to realize low-carbon and high-efficiency ironmaking.To optimize the compositions of... Vanadium-bearing titanomagnetite carbon composite briquette(VTM-CCB)was proposed as an innovative and promising blast furnace burden to realize low-carbon and high-efficiency ironmaking.To optimize the compositions of VTM-CCB based on its softening–melting–dripping characteristics,the evolution behavior and mechanisms of VTM-CCB in cohesive zone and dripping zone were investigated by conducting softening–melting tests under blast furnace conditions.The results show that the structure evolution of VTM-CCB in softening–melting process is correlated to the molten slag,metallic iron,liquid iron,and residual carbon.With the molar ratio of the fixed carbon to the reducible oxygen in iron oxides(FC/O ratio)ranging from 0.8 to 1.0,the VTM-CCB tends to form dense structure and accelerate the softening and melting.With increasing the FC/O ratio to 1.2 and 1.4,the VTM-CCB tends to form concentric circular structure,which could suppress the collapse of packed bed,shift down the location of core cohesive zone,and improve the gas permeability.Although the appropriate increase in FC/O ratio could improve the softening–melting performance of VTM-CCB,a higher FC/O ratio could also promote the precipitation of Ti(C,N),thereby thickening the molten mixtures and deteriorating the dripping behavior.Fully considering the softening–melting–dripping characteristics and permeability,the appropriate FC/O ratio of VTM-CCB should be controlled in the range of 1.0–1.2. 展开更多
关键词 vanadium-bearing titanomagnetite carbon composite briquette FC/O ratio Softening-melting-dripping characteristic TI(C N) Blast furnace
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部