Effects of cooling rates on the morphology, sizes and species of primary vanadium-containing phases in Al-10V master alloys were investigated. The results show that the primary vanadium-containing phases with differen...Effects of cooling rates on the morphology, sizes and species of primary vanadium-containing phases in Al-10V master alloys were investigated. The results show that the primary vanadium-containing phases with different morphologies and compositions present in Al-10V master alloys at different cooling rates with the pouring temperature of 1,170 °C. When the Al-10V master alloy is solidified in the refractory mold at a cooling rate of 2 °C·s-1, the vanadium-containing phases are mainly plate-like Al10V phases, with the average size of 100.0 μm in the center and 93.2 μm at the edge of the ingot. When the master alloy is solidified in the graphite mold at a cooling rate of 24.3 °C·s-1, the primary vanadium-containing phases are dendritic Al3V phases, with the average length of 297.0 μm for the first dendrite in the center and 275.0 μm at the edge of the ingot. The secondary dendrite arm spacing (SDAS) is 9.5 μm in the center and 9.3 μm at the edge of the ingot, respectively. When the solidification is carried out in the copper mould at a cooling rate of 45.7 °C·s-1, the primary vanadium-containing phases are also Al3V phases but with smaller size, compared with that prepared at the cooling rate of 24.3 °C·s-1. As a result, the average length is 190.0 μm for the first dendrite in the center and 150.0 μm at the edge of the ingot. The SDAS is 9.8 μm in the center and 4.4 μm at the edge of the ingot, respectively.展开更多
A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas...A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.展开更多
基金financially supported by the Electromagnetic Processing of Materials (EPM) Lab Foundation in Northeastern University in China(No.NEU-EPM-005)the National Natural Science Foundation of China(Nos.51374067 and 51804010)the Training Program Foundation for the Talents by Beijing(No.2015000020124G023)
文摘Effects of cooling rates on the morphology, sizes and species of primary vanadium-containing phases in Al-10V master alloys were investigated. The results show that the primary vanadium-containing phases with different morphologies and compositions present in Al-10V master alloys at different cooling rates with the pouring temperature of 1,170 °C. When the Al-10V master alloy is solidified in the refractory mold at a cooling rate of 2 °C·s-1, the vanadium-containing phases are mainly plate-like Al10V phases, with the average size of 100.0 μm in the center and 93.2 μm at the edge of the ingot. When the master alloy is solidified in the graphite mold at a cooling rate of 24.3 °C·s-1, the primary vanadium-containing phases are dendritic Al3V phases, with the average length of 297.0 μm for the first dendrite in the center and 275.0 μm at the edge of the ingot. The secondary dendrite arm spacing (SDAS) is 9.5 μm in the center and 9.3 μm at the edge of the ingot, respectively. When the solidification is carried out in the copper mould at a cooling rate of 45.7 °C·s-1, the primary vanadium-containing phases are also Al3V phases but with smaller size, compared with that prepared at the cooling rate of 24.3 °C·s-1. As a result, the average length is 190.0 μm for the first dendrite in the center and 150.0 μm at the edge of the ingot. The SDAS is 9.8 μm in the center and 4.4 μm at the edge of the ingot, respectively.
基金Item Sponsored by National Natural Science Foundation of China(50534010)
文摘A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.