The solid-state reduction kinetics of pre-oxidized vanadium-titanium magnetite concentrate was studied. The phase and microstructure of the reduction product were characterized by XRD, SEM and EDS methods, based on wh...The solid-state reduction kinetics of pre-oxidized vanadium-titanium magnetite concentrate was studied. The phase and microstructure of the reduction product were characterized by XRD, SEM and EDS methods, based on which the mechanism of the solid-state reduction was investigated. The results showed that using coal as reductant at 950-1100 °C, the solid-state reduction of the pre-oxidized vanadium-titanium magnetite concentrate was controlled by interface chemical reaction and the apparent activation energy was 67.719 k J/mol. The mineral phase transformation during the reduction process can be described as follows: pre-oxidized vanadium-titanium magnetite concentrate → ulvospinel → ilmenite → Fe Ti2O5 →(FenTi1-n)Ti2O5. M3O5-type(M can be Fe, Ti, Mg, Mn, etc) solid solutions would be formed during the reduction process of the pre-oxidized vanadium-titanium magnetite concentrate at 1050 °C for 60 min. The poor reducibility of iron in M3O5 solid solutions is the main reason to limit the reduction property of pre-oxidized vanadium-titanium magnetite concentrate.展开更多
High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future....High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future.By referencing the production data of vanadium-titanium magnetite blast furnaces,this study explored the softening-melting behavior of high-chromium vanadium-titanium magnetite and obtained the optimal integrated burden based on flux pellets.The results show that the burden with a composition of 70wt%flux pellets and 30wt%acid pellets exhibits the best softening-melting properties.In comparison to that of the single burden,the softening-melting characteristic temperature of this burden composition was higher.The melting interval first increased from 307 to 362℃and then decreased to 282℃.The maximum pressure drop(ΔPmax)decreased from 26.76 to 19.01 kPa.The permeability index(S)dropped from 4643.5 to 2446.8 kPa·℃.The softening-melting properties of the integrated burden were apparently improved.The acid pellets played a role in withstanding load during the softening process.The flux pellets in the integrated burden exhibited a higher slag melting point,which increased the melting temperature during the melting process.The slag homogeneity and the TiC produced by over-reduction led to the gas permeability deterioration of the single burden.The segregation of the flux and acid pellets in the HVTM proportion and basicity mainly led to the better softening-melting properties of the integrated burden.展开更多
A novel method of pellet calcification roasting-H_(2)SO_(4) leaching was proposed to efficiently separate and extract vanadium(V)from vanadium-titanium(V-Ti)magnetite concentrates.The leaching rate of V is as high as ...A novel method of pellet calcification roasting-H_(2)SO_(4) leaching was proposed to efficiently separate and extract vanadium(V)from vanadium-titanium(V-Ti)magnetite concentrates.The leaching rate of V is as high as 88.98%,while the leaching rate of impurity iron is only 1.79%.Moreover,the leached pellets can be used as raw materials for blast furnace ironmaking after secondary roasting.X-ray photoelectron spectroscopy(XPS)and scanning electron microscopy with energy dispersive X-ray spectrometry(SEMEDS)analyses showed that V^(3+)was oxidized to V^(5+)after roasting at 1200℃,and V^(5+)was then leached by H_(2)SO_(4).X-ray diffraction(XRD)analyses and single factor experiment revealed a minimal amount of dissolved Fe_(2)O_(3) during H_(2)SO_(4) leaching.Therefore,a high separation degree of V and iron(Fe)from V-Ti magnetite concentrate was achieved through H_(2)SO_(4) leaching.Compared with the traditional roastingleaching process,this process can achieve a high selectivity of V and Fe,and has excellent prospects for industrial production.展开更多
The reduction behavior and metallization degree of magnetite concentrate with agave bagasse were investigated in an inert atmosphere.The effects of temperature,biomass content,and residence time on reduction experimen...The reduction behavior and metallization degree of magnetite concentrate with agave bagasse were investigated in an inert atmosphere.The effects of temperature,biomass content,and residence time on reduction experiments and metallization degree were investigated by X-ray diffraction and scanning electron microscopy.Compared with other types of biomass,agave bagasse had lower contents of nitrogen,sulfur,and ash.X-ray diffraction analysis showed that the metallization degree improved with increasing temperature and biomass content.Complete metallization was achieved at 1100℃ for 30 min with 65:35 and 50:50 ratios of the magnetite concentrate to the agave bagasse.These results demonstrate that agave bagasse promotes the efficient metallization of magnetite concentrate without the external addition of a reducing agent.Therefore,this biomass is a technical suitable alternative to replace fossil fuels in steelmaking.展开更多
Basicity has an important effect on the sinter quality, especially for low-titanium vanadium-titanium sinter. The effect of basieity on sintering behavior of low-titanium vanadium-titanium mixture, and the transferenc...Basicity has an important effect on the sinter quality, especially for low-titanium vanadium-titanium sinter. The effect of basieity on sintering behavior of low-titanium vanadium-titanium mixture, and the transference and distribution of element in sintering process were researched by sinter pot test, mineralogical analysis, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. The results show that CaO preferentially reacts with TiO2, generating pervoskite, so that the total liquid phase content of the sinter is low. There is an increase in the perovskite concentration of the sinter with the basicity ranging from 1.9:1 to 2.7:1. With increasing the basicity, the calcium ferrite content increases slightly and then rises rapidly, while the silicate content decreases and the metallurgical property of the sinter is improved. As for the distribution of these elements in the sinter, Ti occurs mainly in perovskite, V occurs mainly in silicate, and Fe occurs mainly in magnetite and hematite. The most abundant occurrence of Ca and Si occurs in silicate and perovskite. With increasing the basicity, the contents of A1 and Mg increase in calcium ferrite, while they decrease in other minerals.展开更多
This study examined spatial variations in the concentration,grain size and heavy mineral assemblages on Cedar Beach(Lake Erie,Canada).Magnetic studies of heavy mineral-enriched,dark-reddish sands present on the beac...This study examined spatial variations in the concentration,grain size and heavy mineral assemblages on Cedar Beach(Lake Erie,Canada).Magnetic studies of heavy mineral-enriched,dark-reddish sands present on the beach showed that magnetite(~150μm) is the dominant magnetic mineral.Surficial magnetic susceptibility values defined three zones:a lakeward region close to the water line(Zone 1),the upper swash zone(Zone 2) and the region landwards of the upper swash zone (Zone 3).Zone 2 showed the highest bulk and mass susceptibility(κ,χ) and the highest mass percentage of smaller grain-size(250μm) fractions in the bulk sand sample.Susceptibility(i.e.κandχ) values decreased and grain size coarsened from Zone 2 lakewards(into Zone 1) and landwards (into Zone 3),and correlated with the distribution of the heavy mineral assemblage,most probably reflecting preferential separation of large,less dense particles by waves and currents both along and across the beach.The eroded western section of Cedar Beach showed much higher concentrations of heavy minerals including magnetite,and finer sand grain sizes than the accreting eastern section, suggesting that magnetic techniques could be used as a rapid,cost-effective way of examining erosion along sensitive coastline areas.展开更多
The effects of basicity and temperature on the reduction process of Hongge high-chromium vanadium-titanium magnetite(HCVTM)sinter were investigated in this work.The main characterization methods of X-ray fluorescence(...The effects of basicity and temperature on the reduction process of Hongge high-chromium vanadium-titanium magnetite(HCVTM)sinter were investigated in this work.The main characterization methods of X-ray fluorescence(XRF),X-ray diffraction(XRD),scanning electron microscope(SEM),and metallographic microscope were employed in this study.In this work,the reduction of HCVTM sinter with different temperature and basicity were experimented.The Fe,FeO,and TiO in reductive samples increase with increasing basicity and temperatures.The increase of basicity and temperature is favorable to the reduction of HCVTM sinter.The Fe phase has out-migration tendency to the surface of sinter while the perovskite and silicate phases have in-migration tendency to the inside of sinter.The reduction degradation index(RDI)decreases while the reduction index(RI)increases with increasing basicity.The RI increases from 67.14%to 82.09%with increasing temperature from 1073 K to 1373 K.展开更多
The sintering of chromium-containing vanadium-titanium magnetite using different coke contents was studied through the sintering pot tests, X-ray diffraction analysis and mineralogical phase analysis. Results showed t...The sintering of chromium-containing vanadium-titanium magnetite using different coke contents was studied through the sintering pot tests, X-ray diffraction analysis and mineralogical phase analysis. Results showed that, as the coke content increased from 3.2% to 4.4%, the liquid phase and combustion zone thickness increased while the vertical sintering rate and ratio of sintered product decreased. In addition, the combustion ratio of exhaust gas also increased with increasing the coke content, indicating that combustion zone temperature also increased, and the excessive the coke content in the sintering process of vanadiumtitanium magnetite is harmful. As the coke content increased, the magnetite, silicates, and perovskite contents of the sintered ore increased while the contents of hematite and calcium ferrite of sintered ore decreased; drum strength decreased, and reduction degradation properties increased while reduction ability decreased. We found that the appropriate coke content for the sintering process is 3.6 wt%.展开更多
Some basic properties of granules,including the granule size distribution,packed-bed permeability,and chemical composition of the adhering layer,were investigated in this study for four iron ore blends consisting of 5...Some basic properties of granules,including the granule size distribution,packed-bed permeability,and chemical composition of the adhering layer,were investigated in this study for four iron ore blends consisting of 5wt%,25wt%,and 45wt%ultrafine magnetite and 25wt%ultrafine hematite concentrates.The effects of varying the sinter basicity(CaO/SiO2 mass ratio=1.4 to 2.2)and adding ultrafine concentrates on the variation of the adhering-layer composition and granule microstructure were studied.Moreover,the effect of adhering-layer compositional changes on sintering reactions was discussed in combination with pot sintering results of ore blends.Increasing sinter basicity led to an increase in the basicities of both the adhering layer and the fine part of the sinter mix,which were higher than the overall sinter basicity.When the sinter chemistry was fixed and fine Si-bearing materials(e.g.,quartz sand)were used,increasing the amount of ultrafine ores in the ore blends tended to reduce the adhering-layer basicity and increase the SiO2 content in both the adhering layer and the fine part of the sinter mix,which will induce the formation of low-strength bonding phases and the deterioration of sinter strength.The adhering-layer composition in granules can be estimated in advance from the compositions of the-1 mm fractions of the raw materials.展开更多
A new method by liquid-liquid-liquid three phase system, consisting of acidified primary amine N1923 (abbreviated as A-N1923), poly(ethylene glycol) (PEG) and (NH4)2S04 aqueous solution, was suggested for the ...A new method by liquid-liquid-liquid three phase system, consisting of acidified primary amine N1923 (abbreviated as A-N1923), poly(ethylene glycol) (PEG) and (NH4)2S04 aqueous solution, was suggested for the separation and simultaneous extraction of Ⅴ(Ⅴ) and Cr(Ⅵ) from the acidic leach solutions of high- chromium vanadium-titanium magnetite. Experimental results indicated that Ⅴ(Ⅴ) and Cr(Ⅵ) could be selectively enriched into the A-N1923 organic top phase and PEG-rich middle phase, respectively, while AI(Ⅲ) and other co-existing impurity ions, such as Si(Ⅳ), Fe(Ⅲ), Ti(Ⅳ), Mg(Ⅱ) and Ca(Ⅱ) in acidic leach solutions, could be enriched in the (NH4)2SO4 bottom aqueous phase. During the process for extraction and separation of Ⅴ(Ⅴ) and Cr(Ⅵ), almost all of impurity ions could be removed. The separation factors between Ⅴ (Ⅴ) and Cr(Ⅵ) could reach 630 and 908, respectively in the organic top phase and PEG middle phase, and yields of recovered Ⅴ(Ⅴ) and Cr(Ⅵ) in the top phase and middle phase respectively were all above 90%. Various effects including aqueous pH, A-N1923 concentration, PEG added amount and (NH4)2SO4 concentration on three-phase partitioning of Ⅴ(Ⅴ) and Cr(Ⅵ) were discussed. It was found that the partition of Cr(Ⅵ) into the PEG-rich middle phase was driven by hydrophobic interaction, while extraction of Ⅴ(Ⅴ) by A-N1923 resulted of anion exchange between NO; and H2V10O4-28. Stripping of Ⅴ(Ⅴ) and Cr(Ⅵ) from the top organic phase and the middle PEG-rich phase were achieved by mixing respectively with NANO3 aqueous solutions and NaOH-(NH4)2SO4 solutions. The present work highlights a new approach for the extraction and purification of V and Cr from the complex multi-metal co-existing acidic leach solutions of high-chromium vanadium-titanium magnetite.展开更多
To investigate the feasibility of co-sintering of fluxed iron ore with magnetite concentrates, the mineralogical properties of a novel fluxed iron ore were studied using particle size analysis, microscopic morphology ...To investigate the feasibility of co-sintering of fluxed iron ore with magnetite concentrates, the mineralogical properties of a novel fluxed iron ore were studied using particle size analysis, microscopic morphology characterization, and X-ray diffraction Rietveld analysis. Following that, the experiments for granulation performance and basic sintering characteristics were designed under seven different fluxed iron ore ratios, and the integrated ranking of different fluxed iron ore ratios was determined using gray relation analysis. Finally, the results of the industrial trails were combined with the feasibility analysis. Test and experimental results show that the fraction of the fluxed iron ore particles larger than 0.5 mm can account for more than 48%, and the particles have two morphologies: spherical-rough and flaky-smooth. Ca elements are found in the form of calcite (CaCO3) and dolomite (CaMg(CO3)2). The average particle size of granules and powder removal rate can be improved from 2.50 to 3.16 mm and 39.60% to 24.20%, respectively, with the increase in the fluxed iron ore ratio. Furthermore, the fluxed iron ore can improve assimilability and liquid fluidity of magnetite concentrates. In terms of overall granulation performance and sintering characteristics, the fluxed iron ore ratios are graded from best to worst as follows: 12%, 15%, 9%, 18%, 21%, 6% and 3%. The industrial trails show that when the fluxed iron ore ratio is increased, the beneficial effect of the superior sintering characteristics of the fluxed iron ore itself is ideally balanced with the negative effect of the lower amount of additional CaO at 12% ratio, and thus, it is feasible to bring the fluxed iron ore into production at a level of roughly 12%.展开更多
The sodium smelting of vanadium-titanium magnetite can achieve the comprehensive utilization of Fe,V,and Ti.However,the generation of alkaline slag during this process may cause damage to refractory materials.The wett...The sodium smelting of vanadium-titanium magnetite can achieve the comprehensive utilization of Fe,V,and Ti.However,the generation of alkaline slag during this process may cause damage to refractory materials.The wettability and corrosion behavior of alkaline slag on three types of refractory(MgO-C,SiC,and high alumina refractory)substrates were investigated at temperatures up to 1200℃.The effects of duration on the wettability of molten slag on SiC substrates were also investigated.Results showed that the high alumina refractory exhibited better wettability with the molten slag than the others,and thus,it is easier to be corroded.The results of scanning electron microscopy coupled with energy dispersive spectroscopy showed that MgO-C and high alumina refractory substrates were severely eroded.There was a visible and regular interfacial reaction layer between the slag and SiC refractory substrate,which was produced by the redox reaction between the metal oxides in the slag and the SiC refractory substrate.With the increase in holding time,the interface layer expands and silico-ferrite phases are generated at the interface.The redox reaction between Fe_(2)O_(3) and SiC substrate is the main reason for the corrosion.By comparing the differences in wettability and corrosion behavior between the alkaline slag from sodium smelting of vanadium-titanium magnetite and MgO-C,SiC and high alumina refractories,it is concluded that SiC refractory has good corrosion resistance to the slag.Iron oxides in the slag accelerate the oxidation rate of SiC refractory.展开更多
To comprehensively utilize the low-iron high-vanadium-titanium magnetite,a new method of vortex smelting reduction of vanadium-titanium magnetite was proposed,and the enrichment and reconstitution regularity of Ti-bea...To comprehensively utilize the low-iron high-vanadium-titanium magnetite,a new method of vortex smelting reduction of vanadium-titanium magnetite was proposed,and the enrichment and reconstitution regularity of Ti-bearing phases in the slag was investigated through X-ray fluorescence spectrometry,X-ray photoelectron spectroscopy,X-ray diffraction analysis,and optical microscopy.The phase diagram revealed that the preferential crystallization of MgTi_(2)O_(5) can be achieved by adjusting the CaO,MgO,and TiO_(2) contents of slag.The predominant Ti-bearing phases in the slag obtained from the reduction process are MgxTi_(3_x)O_(5)(0≤x≤1)and CaTiO_(3).FeTiO_(3) is present at carbon-iron ratio(CR)=1.3,while MgTi_(2)O4 and TiC are formed at CR=1.3.The enrichment of TiO_(2) in the slag increases first and then decreases as the CR increases,and at CR=1.1,the enrichment of TiO_(2) in the slag reaches 51.3 wt.%.Additionally,the concentrations of MgxTi_(3_x)O_(5)(0≤x≤1)and CaTiO_(3) in the slag,along with the grain width of MgxTi_(3_x)O_(5)(0≤x≤1),decrease with the increase in CR.展开更多
Western Australian magnetite concentrates normally have ultrafine granularity and much higher specific surface areas than Chinese magnetite concentrates owing to the significant pre-grinding and beneficiation for sale...Western Australian magnetite concentrates normally have ultrafine granularity and much higher specific surface areas than Chinese magnetite concentrates owing to the significant pre-grinding and beneficiation for saleable iron grade. Such characteristics will inevitably affect the subsequent pelletization process. However, very few investi- gations have been done before. Thus, the oxidation and induration characteristics of pellet made from a Western Aus- tralian ultrafine magnetite concentrate were revealed by conducting routine preheating-roasting tests in an electric tube furnace and investigating the microstructure of fired pellets under an optical microscope in comparison with that of pellets made from typical Chinese magnetite concentrate. The liquidus regions of CaO-SiO2-Fe2O3 and CaO-SiO2- Al2O3 ternary systems in air at various temperatures were calculated by FactSage software to explain the importance of liquid phase in the consolidation of fired pellets. The results show that pellet made from ultrafine magnetite con- centrate possesses better oxidability and preheating performance than that made from Chinese magnetite concentrate. However, it has inferior roasting performance, usually requiring conditions of roasting at 1280℃ for at least 30 rain to acquire sufficiently high compressive strength, which are attributed to higher temperature sensitivity caused by its smaller particle size and less formation of liquid phase because of low impurities like CaO and Al2O3 in raw materials. Correspondingly, its roasting performanee can be significantly improved by blending with Chinese magnetite concen- trates or increasing the pellet basicity (WCaO/WSiO2). By comprehensive evaluation, blending with Chinese iron ore concentrates is an appropriate way to utilize Western Australia ultrafine magnetite concentrates.展开更多
The mechanism of improving compressive strength of magnetite pellet by adding boron-bearing iron concentrate was studied. Boron-bearing iron concentrate and magnetite were mixed, pelletized and roasted under differ en...The mechanism of improving compressive strength of magnetite pellet by adding boron-bearing iron concentrate was studied. Boron-bearing iron concentrate and magnetite were mixed, pelletized and roasted under differ ent roasting conditions. Then, compressive strength of pellets was tested, and polished sections of the roasted pellets were analyzed from the perspective of mineralogy. Finally, the effects of different proportions, roasting temperatures and roasting time of boron-bearing iron concentrate on the compressive strength of magnetite pellets were investigated and explained.展开更多
For improving the strength of pellets made of ultrafine and super-high-grade magnetite concentrates,the influence of basicity(CaO/SiO2 ratio)on the roasting and consolidation of pellets was investigated.The results sh...For improving the strength of pellets made of ultrafine and super-high-grade magnetite concentrates,the influence of basicity(CaO/SiO2 ratio)on the roasting and consolidation of pellets was investigated.The results showed that with the basicity of pellets increasing from 0.09 to 0.60,the compressive strength of both preheated and roasted pellets achieved an evident improvement from 502 and 2519 to 549 and 3096 N/pellet,respectively;meanwhile,the roasting time decreased from 15 to 9.min.The low-viscosity liquid phases were easily generated in fired pellets at the basicity range of 0.40-0.60 under the roasting temperature of 1240℃,filled the voids between hematite particles and tightened the bonding among particles,effectively restraining the generation of concentric cracks and decreasing the porosity of fired pellets;low-viscosity liquid phases facilitated the solid diffusion of hematite,leading to the formation of coarse hematite crystals and thicker connecting necks.展开更多
The reducing property of pellets prepared by ultrafine magnetite concentrate(UMC)and improving method were revealed.The results show that the reduction degree of UMC pellets is only about 56%compared with that of pell...The reducing property of pellets prepared by ultrafine magnetite concentrate(UMC)and improving method were revealed.The results show that the reduction degree of UMC pellets is only about 56%compared with that of pellets prepared from ordinary iron ore concentrate with relatively coarse particle size,which is significantly lower than the general reduction degree of about 70%.When the composite binder composed of bentonite and organic binder was added,the reduction degree was significantly increased to 69.66%.The revealed mechanism shows that the reduced pellets with common bentonite have a concentric structure,the oxidation gap between the inner and outer layers is obvious,and the outer dense oxide layer hinders the oxidation and reduction of the inner layer.After adding the composite binder,the organic components significantly improved the internal porosity of the pellets and the aggregation degree of ultrafine iron ore concentrate particles in the granulation process,forming a porous structure.The non-uniform double-layer structure is eliminated,and the increased pores are conducive to the internal diffusion of CO,and finally the reduction degree of pellets is increased to the level equivalent to that of ordinary magnetite pellets.展开更多
In order to clarify the slag system of high Cr2O3 vanadium-titanium magnetite smelting in BF (blast furnace), the melting properties of slag samples prepared by analytically pure reagents were measured. By means of ...In order to clarify the slag system of high Cr2O3 vanadium-titanium magnetite smelting in BF (blast furnace), the melting properties of slag samples prepared by analytically pure reagents were measured. By means of orthogonal test synthetic weighted score method, the optimal slag for high Cr2O3 vanadium-titanium magnetite was obtained, which contained 10% MgO, 8% TiO2 and 15% Al2O3, with the binary basicity being 1.15. In addition, the effects of basicity, MgO, TiO2 and A12 03 on slag melting properties were investigated by single factor test, and the results showed that, with increasing the basicity or TiO2 content, melting temperature (Tin) increased, whereas initial vis- cosity (r/0) and high temperature viscosity (r/h) decreased. With increasing the MgO content, Tm decreased firstly and then increased. With increasing the Al2 O3 content, Tm increased, and η0 and r/h decreased firstly and then increased.展开更多
基金Project(NCET-10-0834)supported by the Program for New Century Excellent Talents in University,China
文摘The solid-state reduction kinetics of pre-oxidized vanadium-titanium magnetite concentrate was studied. The phase and microstructure of the reduction product were characterized by XRD, SEM and EDS methods, based on which the mechanism of the solid-state reduction was investigated. The results showed that using coal as reductant at 950-1100 °C, the solid-state reduction of the pre-oxidized vanadium-titanium magnetite concentrate was controlled by interface chemical reaction and the apparent activation energy was 67.719 k J/mol. The mineral phase transformation during the reduction process can be described as follows: pre-oxidized vanadium-titanium magnetite concentrate → ulvospinel → ilmenite → Fe Ti2O5 →(FenTi1-n)Ti2O5. M3O5-type(M can be Fe, Ti, Mg, Mn, etc) solid solutions would be formed during the reduction process of the pre-oxidized vanadium-titanium magnetite concentrate at 1050 °C for 60 min. The poor reducibility of iron in M3O5 solid solutions is the main reason to limit the reduction property of pre-oxidized vanadium-titanium magnetite concentrate.
基金supported by the National Natural Science Foundation of China (Nos.52174277 and 52204309)the China Postdoctoral Science Foundation (No.2022M720683).
文摘High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future.By referencing the production data of vanadium-titanium magnetite blast furnaces,this study explored the softening-melting behavior of high-chromium vanadium-titanium magnetite and obtained the optimal integrated burden based on flux pellets.The results show that the burden with a composition of 70wt%flux pellets and 30wt%acid pellets exhibits the best softening-melting properties.In comparison to that of the single burden,the softening-melting characteristic temperature of this burden composition was higher.The melting interval first increased from 307 to 362℃and then decreased to 282℃.The maximum pressure drop(ΔPmax)decreased from 26.76 to 19.01 kPa.The permeability index(S)dropped from 4643.5 to 2446.8 kPa·℃.The softening-melting properties of the integrated burden were apparently improved.The acid pellets played a role in withstanding load during the softening process.The flux pellets in the integrated burden exhibited a higher slag melting point,which increased the melting temperature during the melting process.The slag homogeneity and the TiC produced by over-reduction led to the gas permeability deterioration of the single burden.The segregation of the flux and acid pellets in the HVTM proportion and basicity mainly led to the better softening-melting properties of the integrated burden.
基金funded by the National Science Foundation of China(No.51704028)the Key R&D Program of Yunnan Province(No.2018IB027)。
文摘A novel method of pellet calcification roasting-H_(2)SO_(4) leaching was proposed to efficiently separate and extract vanadium(V)from vanadium-titanium(V-Ti)magnetite concentrates.The leaching rate of V is as high as 88.98%,while the leaching rate of impurity iron is only 1.79%.Moreover,the leached pellets can be used as raw materials for blast furnace ironmaking after secondary roasting.X-ray photoelectron spectroscopy(XPS)and scanning electron microscopy with energy dispersive X-ray spectrometry(SEMEDS)analyses showed that V^(3+)was oxidized to V^(5+)after roasting at 1200℃,and V^(5+)was then leached by H_(2)SO_(4).X-ray diffraction(XRD)analyses and single factor experiment revealed a minimal amount of dissolved Fe_(2)O_(3) during H_(2)SO_(4) leaching.Therefore,a high separation degree of V and iron(Fe)from V-Ti magnetite concentrate was achieved through H_(2)SO_(4) leaching.Compared with the traditional roastingleaching process,this process can achieve a high selectivity of V and Fe,and has excellent prospects for industrial production.
基金National Science and Technology Council(CONACYT)for the grant No.665811 awarded to his Master thesis。
文摘The reduction behavior and metallization degree of magnetite concentrate with agave bagasse were investigated in an inert atmosphere.The effects of temperature,biomass content,and residence time on reduction experiments and metallization degree were investigated by X-ray diffraction and scanning electron microscopy.Compared with other types of biomass,agave bagasse had lower contents of nitrogen,sulfur,and ash.X-ray diffraction analysis showed that the metallization degree improved with increasing temperature and biomass content.Complete metallization was achieved at 1100℃ for 30 min with 65:35 and 50:50 ratios of the magnetite concentrate to the agave bagasse.These results demonstrate that agave bagasse promotes the efficient metallization of magnetite concentrate without the external addition of a reducing agent.Therefore,this biomass is a technical suitable alternative to replace fossil fuels in steelmaking.
基金Projects(2012AA062302,2012AA062304) supported by the National High Technology Research and Development Program of China(863 Program)Projects(51090384,51174051) supported by the National Natural Science Foundation of ChinaProject(2012DFR60210) supported by the International Cooperation of Ministry of China
文摘Basicity has an important effect on the sinter quality, especially for low-titanium vanadium-titanium sinter. The effect of basieity on sintering behavior of low-titanium vanadium-titanium mixture, and the transference and distribution of element in sintering process were researched by sinter pot test, mineralogical analysis, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. The results show that CaO preferentially reacts with TiO2, generating pervoskite, so that the total liquid phase content of the sinter is low. There is an increase in the perovskite concentration of the sinter with the basicity ranging from 1.9:1 to 2.7:1. With increasing the basicity, the calcium ferrite content increases slightly and then rises rapidly, while the silicate content decreases and the metallurgical property of the sinter is improved. As for the distribution of these elements in the sinter, Ti occurs mainly in perovskite, V occurs mainly in silicate, and Fe occurs mainly in magnetite and hematite. The most abundant occurrence of Ca and Si occurs in silicate and perovskite. With increasing the basicity, the contents of A1 and Mg increase in calcium ferrite, while they decrease in other minerals.
基金supported by funding from the 111 Project B07011 of Ministry of Education of China,the China Scholarship Council(CSC) to SWZ (NCIS No.2007103928)an NSERC grant to MTC. D.Chevalier is thanked for her help in sampling. Laboratory assistance was provided bv K.Kawasaki and S.Joshi
文摘This study examined spatial variations in the concentration,grain size and heavy mineral assemblages on Cedar Beach(Lake Erie,Canada).Magnetic studies of heavy mineral-enriched,dark-reddish sands present on the beach showed that magnetite(~150μm) is the dominant magnetic mineral.Surficial magnetic susceptibility values defined three zones:a lakeward region close to the water line(Zone 1),the upper swash zone(Zone 2) and the region landwards of the upper swash zone (Zone 3).Zone 2 showed the highest bulk and mass susceptibility(κ,χ) and the highest mass percentage of smaller grain-size(250μm) fractions in the bulk sand sample.Susceptibility(i.e.κandχ) values decreased and grain size coarsened from Zone 2 lakewards(into Zone 1) and landwards (into Zone 3),and correlated with the distribution of the heavy mineral assemblage,most probably reflecting preferential separation of large,less dense particles by waves and currents both along and across the beach.The eroded western section of Cedar Beach showed much higher concentrations of heavy minerals including magnetite,and finer sand grain sizes than the accreting eastern section, suggesting that magnetic techniques could be used as a rapid,cost-effective way of examining erosion along sensitive coastline areas.
基金Project(2013CB632603)supported by the National Basic Research Program of ChinaProject(2015BAB19B02)supported by the National Key Technology R&D Program of ChinaProjects(51674084,51174051,51574082)supported by National Natural Science Foundation of China
文摘The effects of basicity and temperature on the reduction process of Hongge high-chromium vanadium-titanium magnetite(HCVTM)sinter were investigated in this work.The main characterization methods of X-ray fluorescence(XRF),X-ray diffraction(XRD),scanning electron microscope(SEM),and metallographic microscope were employed in this study.In this work,the reduction of HCVTM sinter with different temperature and basicity were experimented.The Fe,FeO,and TiO in reductive samples increase with increasing basicity and temperatures.The increase of basicity and temperature is favorable to the reduction of HCVTM sinter.The Fe phase has out-migration tendency to the surface of sinter while the perovskite and silicate phases have in-migration tendency to the inside of sinter.The reduction degradation index(RDI)decreases while the reduction index(RI)increases with increasing basicity.The RI increases from 67.14%to 82.09%with increasing temperature from 1073 K to 1373 K.
基金Funded by the National Natural Science Foundation of China(Nos.51604065,51674084)the Fundamental Funds for the Program of the Science Foundation of Liaoning Province(No.20170540316)
文摘The sintering of chromium-containing vanadium-titanium magnetite using different coke contents was studied through the sintering pot tests, X-ray diffraction analysis and mineralogical phase analysis. Results showed that, as the coke content increased from 3.2% to 4.4%, the liquid phase and combustion zone thickness increased while the vertical sintering rate and ratio of sintered product decreased. In addition, the combustion ratio of exhaust gas also increased with increasing the coke content, indicating that combustion zone temperature also increased, and the excessive the coke content in the sintering process of vanadiumtitanium magnetite is harmful. As the coke content increased, the magnetite, silicates, and perovskite contents of the sintered ore increased while the contents of hematite and calcium ferrite of sintered ore decreased; drum strength decreased, and reduction degradation properties increased while reduction ability decreased. We found that the appropriate coke content for the sintering process is 3.6 wt%.
基金Financial supports from the National Torch Program of China (No.2011GH561685)Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources are sincerely acknowledged
文摘Some basic properties of granules,including the granule size distribution,packed-bed permeability,and chemical composition of the adhering layer,were investigated in this study for four iron ore blends consisting of 5wt%,25wt%,and 45wt%ultrafine magnetite and 25wt%ultrafine hematite concentrates.The effects of varying the sinter basicity(CaO/SiO2 mass ratio=1.4 to 2.2)and adding ultrafine concentrates on the variation of the adhering-layer composition and granule microstructure were studied.Moreover,the effect of adhering-layer compositional changes on sintering reactions was discussed in combination with pot sintering results of ore blends.Increasing sinter basicity led to an increase in the basicities of both the adhering layer and the fine part of the sinter mix,which were higher than the overall sinter basicity.When the sinter chemistry was fixed and fine Si-bearing materials(e.g.,quartz sand)were used,increasing the amount of ultrafine ores in the ore blends tended to reduce the adhering-layer basicity and increase the SiO2 content in both the adhering layer and the fine part of the sinter mix,which will induce the formation of low-strength bonding phases and the deterioration of sinter strength.The adhering-layer composition in granules can be estimated in advance from the compositions of the-1 mm fractions of the raw materials.
基金Supported by the National Basic Research and Development Program of China(973ProgramNo.2013CB632602)the National Natural Science Foundation of China(Nos.51574213,51074150)
文摘A new method by liquid-liquid-liquid three phase system, consisting of acidified primary amine N1923 (abbreviated as A-N1923), poly(ethylene glycol) (PEG) and (NH4)2S04 aqueous solution, was suggested for the separation and simultaneous extraction of Ⅴ(Ⅴ) and Cr(Ⅵ) from the acidic leach solutions of high- chromium vanadium-titanium magnetite. Experimental results indicated that Ⅴ(Ⅴ) and Cr(Ⅵ) could be selectively enriched into the A-N1923 organic top phase and PEG-rich middle phase, respectively, while AI(Ⅲ) and other co-existing impurity ions, such as Si(Ⅳ), Fe(Ⅲ), Ti(Ⅳ), Mg(Ⅱ) and Ca(Ⅱ) in acidic leach solutions, could be enriched in the (NH4)2SO4 bottom aqueous phase. During the process for extraction and separation of Ⅴ(Ⅴ) and Cr(Ⅵ), almost all of impurity ions could be removed. The separation factors between Ⅴ (Ⅴ) and Cr(Ⅵ) could reach 630 and 908, respectively in the organic top phase and PEG middle phase, and yields of recovered Ⅴ(Ⅴ) and Cr(Ⅵ) in the top phase and middle phase respectively were all above 90%. Various effects including aqueous pH, A-N1923 concentration, PEG added amount and (NH4)2SO4 concentration on three-phase partitioning of Ⅴ(Ⅴ) and Cr(Ⅵ) were discussed. It was found that the partition of Cr(Ⅵ) into the PEG-rich middle phase was driven by hydrophobic interaction, while extraction of Ⅴ(Ⅴ) by A-N1923 resulted of anion exchange between NO; and H2V10O4-28. Stripping of Ⅴ(Ⅴ) and Cr(Ⅵ) from the top organic phase and the middle PEG-rich phase were achieved by mixing respectively with NANO3 aqueous solutions and NaOH-(NH4)2SO4 solutions. The present work highlights a new approach for the extraction and purification of V and Cr from the complex multi-metal co-existing acidic leach solutions of high-chromium vanadium-titanium magnetite.
基金supported by the National Natural Science Foundation of China(52174291)the Beijing New-star Plan of Science and Technology(Z211100002121115)+2 种基金the Central Universities Foundation of China(06500170)the Guangdong Basic and Applied Basic Research Fund Joint Regional Funds-Youth Foundation Projects(2020A1515111008)the China Postdoctoral Science Foundation(2021M690369).
文摘To investigate the feasibility of co-sintering of fluxed iron ore with magnetite concentrates, the mineralogical properties of a novel fluxed iron ore were studied using particle size analysis, microscopic morphology characterization, and X-ray diffraction Rietveld analysis. Following that, the experiments for granulation performance and basic sintering characteristics were designed under seven different fluxed iron ore ratios, and the integrated ranking of different fluxed iron ore ratios was determined using gray relation analysis. Finally, the results of the industrial trails were combined with the feasibility analysis. Test and experimental results show that the fraction of the fluxed iron ore particles larger than 0.5 mm can account for more than 48%, and the particles have two morphologies: spherical-rough and flaky-smooth. Ca elements are found in the form of calcite (CaCO3) and dolomite (CaMg(CO3)2). The average particle size of granules and powder removal rate can be improved from 2.50 to 3.16 mm and 39.60% to 24.20%, respectively, with the increase in the fluxed iron ore ratio. Furthermore, the fluxed iron ore can improve assimilability and liquid fluidity of magnetite concentrates. In terms of overall granulation performance and sintering characteristics, the fluxed iron ore ratios are graded from best to worst as follows: 12%, 15%, 9%, 18%, 21%, 6% and 3%. The industrial trails show that when the fluxed iron ore ratio is increased, the beneficial effect of the superior sintering characteristics of the fluxed iron ore itself is ideally balanced with the negative effect of the lower amount of additional CaO at 12% ratio, and thus, it is feasible to bring the fluxed iron ore into production at a level of roughly 12%.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDC04010100)National Key Research and Development Program of China(Grant No.2018YFC1900500)+1 种基金the Special Project for Transformation of Major Technological Achievements in Hebei Province(Grant No.19044012Z)the Science and Technology Program of Hengshui(Grant No.2020016004B).
文摘The sodium smelting of vanadium-titanium magnetite can achieve the comprehensive utilization of Fe,V,and Ti.However,the generation of alkaline slag during this process may cause damage to refractory materials.The wettability and corrosion behavior of alkaline slag on three types of refractory(MgO-C,SiC,and high alumina refractory)substrates were investigated at temperatures up to 1200℃.The effects of duration on the wettability of molten slag on SiC substrates were also investigated.Results showed that the high alumina refractory exhibited better wettability with the molten slag than the others,and thus,it is easier to be corroded.The results of scanning electron microscopy coupled with energy dispersive spectroscopy showed that MgO-C and high alumina refractory substrates were severely eroded.There was a visible and regular interfacial reaction layer between the slag and SiC refractory substrate,which was produced by the redox reaction between the metal oxides in the slag and the SiC refractory substrate.With the increase in holding time,the interface layer expands and silico-ferrite phases are generated at the interface.The redox reaction between Fe_(2)O_(3) and SiC substrate is the main reason for the corrosion.By comparing the differences in wettability and corrosion behavior between the alkaline slag from sodium smelting of vanadium-titanium magnetite and MgO-C,SiC and high alumina refractories,it is concluded that SiC refractory has good corrosion resistance to the slag.Iron oxides in the slag accelerate the oxidation rate of SiC refractory.
基金financially supported by the National Natural Science Foundation of China (U1908225)the Fundamental Research Funds for Central Universities (N2225012 and N232405-06).
文摘To comprehensively utilize the low-iron high-vanadium-titanium magnetite,a new method of vortex smelting reduction of vanadium-titanium magnetite was proposed,and the enrichment and reconstitution regularity of Ti-bearing phases in the slag was investigated through X-ray fluorescence spectrometry,X-ray photoelectron spectroscopy,X-ray diffraction analysis,and optical microscopy.The phase diagram revealed that the preferential crystallization of MgTi_(2)O_(5) can be achieved by adjusting the CaO,MgO,and TiO_(2) contents of slag.The predominant Ti-bearing phases in the slag obtained from the reduction process are MgxTi_(3_x)O_(5)(0≤x≤1)and CaTiO_(3).FeTiO_(3) is present at carbon-iron ratio(CR)=1.3,while MgTi_(2)O4 and TiC are formed at CR=1.3.The enrichment of TiO_(2) in the slag increases first and then decreases as the CR increases,and at CR=1.1,the enrichment of TiO_(2) in the slag reaches 51.3 wt.%.Additionally,the concentrations of MgxTi_(3_x)O_(5)(0≤x≤1)and CaTiO_(3) in the slag,along with the grain width of MgxTi_(3_x)O_(5)(0≤x≤1),decrease with the increase in CR.
基金supported by Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources
文摘Western Australian magnetite concentrates normally have ultrafine granularity and much higher specific surface areas than Chinese magnetite concentrates owing to the significant pre-grinding and beneficiation for saleable iron grade. Such characteristics will inevitably affect the subsequent pelletization process. However, very few investi- gations have been done before. Thus, the oxidation and induration characteristics of pellet made from a Western Aus- tralian ultrafine magnetite concentrate were revealed by conducting routine preheating-roasting tests in an electric tube furnace and investigating the microstructure of fired pellets under an optical microscope in comparison with that of pellets made from typical Chinese magnetite concentrate. The liquidus regions of CaO-SiO2-Fe2O3 and CaO-SiO2- Al2O3 ternary systems in air at various temperatures were calculated by FactSage software to explain the importance of liquid phase in the consolidation of fired pellets. The results show that pellet made from ultrafine magnetite con- centrate possesses better oxidability and preheating performance than that made from Chinese magnetite concentrate. However, it has inferior roasting performance, usually requiring conditions of roasting at 1280℃ for at least 30 rain to acquire sufficiently high compressive strength, which are attributed to higher temperature sensitivity caused by its smaller particle size and less formation of liquid phase because of low impurities like CaO and Al2O3 in raw materials. Correspondingly, its roasting performanee can be significantly improved by blending with Chinese magnetite concen- trates or increasing the pellet basicity (WCaO/WSiO2). By comprehensive evaluation, blending with Chinese iron ore concentrates is an appropriate way to utilize Western Australia ultrafine magnetite concentrates.
基金Item Sponsored by National Natural Science Foundation of China(51204013)Fundamental Research Funds for Central Universities of China(FRF-TP-12-020A)
文摘The mechanism of improving compressive strength of magnetite pellet by adding boron-bearing iron concentrate was studied. Boron-bearing iron concentrate and magnetite were mixed, pelletized and roasted under differ ent roasting conditions. Then, compressive strength of pellets was tested, and polished sections of the roasted pellets were analyzed from the perspective of mineralogy. Finally, the effects of different proportions, roasting temperatures and roasting time of boron-bearing iron concentrate on the compressive strength of magnetite pellets were investigated and explained.
基金The authors want to express their gratitude for the financial support from the National Natural Science Foundation of China(No.51474161)would like to thank the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,which supplied us the facilities and funds to complete the experiments.
文摘For improving the strength of pellets made of ultrafine and super-high-grade magnetite concentrates,the influence of basicity(CaO/SiO2 ratio)on the roasting and consolidation of pellets was investigated.The results showed that with the basicity of pellets increasing from 0.09 to 0.60,the compressive strength of both preheated and roasted pellets achieved an evident improvement from 502 and 2519 to 549 and 3096 N/pellet,respectively;meanwhile,the roasting time decreased from 15 to 9.min.The low-viscosity liquid phases were easily generated in fired pellets at the basicity range of 0.40-0.60 under the roasting temperature of 1240℃,filled the voids between hematite particles and tightened the bonding among particles,effectively restraining the generation of concentric cracks and decreasing the porosity of fired pellets;low-viscosity liquid phases facilitated the solid diffusion of hematite,leading to the formation of coarse hematite crystals and thicker connecting necks.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51974371 and 51804347).
文摘The reducing property of pellets prepared by ultrafine magnetite concentrate(UMC)and improving method were revealed.The results show that the reduction degree of UMC pellets is only about 56%compared with that of pellets prepared from ordinary iron ore concentrate with relatively coarse particle size,which is significantly lower than the general reduction degree of about 70%.When the composite binder composed of bentonite and organic binder was added,the reduction degree was significantly increased to 69.66%.The revealed mechanism shows that the reduced pellets with common bentonite have a concentric structure,the oxidation gap between the inner and outer layers is obvious,and the outer dense oxide layer hinders the oxidation and reduction of the inner layer.After adding the composite binder,the organic components significantly improved the internal porosity of the pellets and the aggregation degree of ultrafine iron ore concentrate particles in the granulation process,forming a porous structure.The non-uniform double-layer structure is eliminated,and the increased pores are conducive to the internal diffusion of CO,and finally the reduction degree of pellets is increased to the level equivalent to that of ordinary magnetite pellets.
基金Item Sponsored by National Natural Science Foundation of China(51090384)National High Technology Research and Development Program(863 Program)of China(2012AA062302,2012AA062304)Fundamental Research Funds for the Central Universities of China(N110202001)
文摘In order to clarify the slag system of high Cr2O3 vanadium-titanium magnetite smelting in BF (blast furnace), the melting properties of slag samples prepared by analytically pure reagents were measured. By means of orthogonal test synthetic weighted score method, the optimal slag for high Cr2O3 vanadium-titanium magnetite was obtained, which contained 10% MgO, 8% TiO2 and 15% Al2O3, with the binary basicity being 1.15. In addition, the effects of basicity, MgO, TiO2 and A12 03 on slag melting properties were investigated by single factor test, and the results showed that, with increasing the basicity or TiO2 content, melting temperature (Tin) increased, whereas initial vis- cosity (r/0) and high temperature viscosity (r/h) decreased. With increasing the MgO content, Tm decreased firstly and then increased. With increasing the Al2 O3 content, Tm increased, and η0 and r/h decreased firstly and then increased.