The flow field in the ejector-diffuser system and its optimal operation condition are hardly complicated due to the complicated turbulent mixing, compressibility effects and even flow unsteadiness which are generated ...The flow field in the ejector-diffuser system and its optimal operation condition are hardly complicated due to the complicated turbulent mixing, compressibility effects and even flow unsteadiness which are generated inside the ejector- diffuser system. This paper aims at the improvement in ejector-diffuser system by focusing attention on entrainment ratio and pressure recovery. Several mixing guide vanes were installed at the inlet of the secondary stream for the purpose of the performance improvement of the ejector system. A Computational Fluid Dynamics (CFD) method based on Fluent has been applied to simulate the supersonic flows and shock waves inside the ejector. A finite volume scheme and density-based solver with coupled scheme were applied in the computational process. Standard k-ω turbulent model, implicit formulations were used considering the accuracy and stability. Previous experimental results showed that more flow vortexes were generated and more vertical flow was introduced into the stream under a mixing guide vane influence. Besides these effects on the secondary stream, the mixing guide vane effects on the shock system of the primary stream were also investigated in this paper. Optimal analysis results of the mixing guide vane effects were also carried out in detail in terms of the positions, lengths and numbers to achieve the best operation condition. The comparison of ejector performance with and without the mixing guide vane was obtained. The ejector-diffuser system performance is discussed in terms of the entrainment ratio, pressure recovery as well as total pressure loss.展开更多
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish...Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.展开更多
外涵静子叶片是大涵道比涡扇发动机气路的核心部件之一,外涵静子脱出是一种较为严重的故障模式,此故障可能会导致飞机或其他发动机部件损伤,进而造成灾难性事故。对外涵静子叶片脱出故障的预警是一项重要的工作。但因其早期特征不明显,...外涵静子叶片是大涵道比涡扇发动机气路的核心部件之一,外涵静子脱出是一种较为严重的故障模式,此故障可能会导致飞机或其他发动机部件损伤,进而造成灾难性事故。对外涵静子叶片脱出故障的预警是一项重要的工作。但因其早期特征不明显,现有的方法较难对此类故障进行有效的预警。因此,针对该问题,基于监控数据提出一种深度特征提取的支持向量数据域描述(Support vector data description,SVDD)的故障预警方法,以实现对外涵静子叶片脱出故障的早期预警。首先,采用基于发动机气路性能辨识的建模方法,建立发动机特定性能参数的观测模型对气路参数进行深度特征提取,以真实状态量与模型观测量的差值作为航空发动机是否发生故障的特征;然后利用SVDD算法建立决策边界,实现故障数据的自动划分,决策边界生成的阈值可在故障发生之前的一定时间之内给出告警;最后,经过多次计算,结果表明,在故障早期直至故障发生的区间内,表征其健康状态的性能参数都与观测量有较大的偏移,表明了所选特征的有效性。使用数据增强方法生成故障仿真数据与真实数据进行对比验证,预警时间比故障真实发生时间预警模型平均提前3.14 h。展开更多
This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Re...This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Reθ-γtransition model as well as using the high-resolution LES separately.The major secondary flow components,comprising the horseshoe,corner,and passage vortices are recognized and the impact on heat or mass transfer is investigated.The complicated behavior of turbine passage secondary flow generation and establishment are impacted by the perspective of boundary layer attributes and inflow turbulence.The passage vortex concerning the latest big leading-edge vane is generated by the enlargement of the circulation developed at the first instance adjacent to the pressure side becomes powerful and mixes with other vortex systems during its migration towards the suction side.The study conclusions reveal that substantial enhancements are attained on the endwall surface,for the entire spanwise blade extension on the pressure surface,and in the highly 3-D region close to the endwall on the suction surface.The forecasted suction surface thermal exchange depicts great conformity with the measurement values and precisely reproduces the enhanced thermal exchange owing to the development and lateral distribution of the secondary flows along the midspan of the blade passage downstream.The impacts of the different secondary flow structures on the endwall thermal exchange are described in depth.展开更多
Droplet behavior in the wave-type flow channel is discussed, especially with the secondary .droplet generation due to impingement of droplets on the wall considered. A numerical method is suggested to simulate tile dr...Droplet behavior in the wave-type flow channel is discussed, especially with the secondary .droplet generation due to impingement of droplets on the wall considered. A numerical method is suggested to simulate tile droplet behavior in the flow field. Calculations are compared With experimental data on the ; pressure drop and separating efficiency. Good agreement exists between the calculations and air-water experiments. The numerical method developed gives a reasonable description of the droplet deposition and secondary droplet generation, and it can be applied to predict the performance of wave-type vane separators.展开更多
The calculation method for vane numbers is obtained on the intention that itshould have no back flow area in the flow passage of centrifugal passage. Then a criterion that thedesign of splitting vanes of centrifugal c...The calculation method for vane numbers is obtained on the intention that itshould have no back flow area in the flow passage of centrifugal passage. Then a criterion that thedesign of splitting vanes of centrifugal compound impeller should ensure that the back flow arearatio be the minimum is proposed. On the basis of the criterion, the slippery theory is used as oneof CFD methods to analyze the inner flow field of the impeller of various kinds of splitting vanesdesign, therefore, the optimized design of splitting vanes is obtained and which agrees with that ofsome testing results.展开更多
The paper presents analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV(particle image velocimetry)and pressure probe traverses.PIV measurements have alread...The paper presents analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV(particle image velocimetry)and pressure probe traverses.PIV measurements have already been performed at middle height inside one diffuser channel passage for a given speed of rotation and various mass flow rates.These results have been already presented in several previous communications.New experiments have been performed using a three-hole pressure probe traverses from hub to shroud diffuser width at different radial locations between the two diffuser geometrical throats.Numerical simulations are also realized with the commercial codes Star CCM+7.02.011 and CFX.Frozen rotor and fully unsteady calculations of the whole pump have been performed.Comparisons between numerical results,previous experimental PIV results and new probe traverses one's are presented and discussed for one mass flow rate.In this respect,a first attempt to take into account fluid leakages between the rotating and fixed part of the pump has been checked since it may affects the real flow structure inside the diffuser.展开更多
Due to the pressure gain combustion characteristics,the rotating detonation combustor(RDC)can enhance thermodynamic cycle efficiency.Therefore,the performance of gas-turbine engine can be further improved with this co...Due to the pressure gain combustion characteristics,the rotating detonation combustor(RDC)can enhance thermodynamic cycle efficiency.Therefore,the performance of gas-turbine engine can be further improved with this combustion technology.In the present study,the RDC operation performance with a turbine guide vane(TGV)is experimentally investigated.Hydrogen and air are used as propellants while hydrogen and air mass flow rate are about 16.1 g/s and 500 g/s and the equivalence ratio is about 1.0.A pre-detonator is used to ignite the mixture.High-frequency dynamic pressure transducers and silicon pressure sensors are employed to measure pressure oscillations and static pressure in the combustion chamber.The experimental results show that the steady propagation of rotating detonation wave(RDW)is observed in the combustion chamber and the mean propagation velocity is above 1650 m/s,reaching over 84%of theoretical Chapman-Jouguet detonation velocity.Clockwise and counterclockwise propagation directions of RDW are obtained.For clockwise propagation direction,the static pressure is about 15%higher in the combustor compared with counterclockwise propagation direction,but the RDW dominant frequency is lower.When the oblique shock wave propagates across the TGV,the pressure oscillations reduces significantly.In addition,as the detonation products flow through the TGV,the static pressure drops up to 32%and 43%for clockwise and counterclockwise propagation process respectively.展开更多
Experimental studies of a model pump-turbine S-curve characteristics and its improvement by misaligned guide vanes (MGV) were extended to prototype pump turbine through 3-D transient flow simulations. The unsteady R...Experimental studies of a model pump-turbine S-curve characteristics and its improvement by misaligned guide vanes (MGV) were extended to prototype pump turbine through 3-D transient flow simulations. The unsteady Reynolds-averaged Navier-Stokes equations with the SST turbulence model were used to model the transient flow within the entire flow passage of a reversible pump-turbine with and without misaligned guide vanes during turbine model start-up. The unstable S-curve and its improvement by using misaligned guide vane were verified by model test and simulation. The transient flow calculations were used to clarify the variations of pressure pulse and internal flow behavior in the entire flow passage. The use of misaligned guide vanes can eliminate the S-curve characteristics of a pump-turbine, and can significantly increase the pressure pulse amplitude in the entire flow passage and the runner radial forces during start-up. The MGV only decreased the pulse amplitude on the guide vane suction side when the rotating speed was less than 50% rated speed. The hydraulic reason is that the MGV dramatically changed the flow patterns inside the entire flow passage, and destroyed the symmetry of the flow distribution inside the guide vane and runner.展开更多
In order to study the influence of the wrap angle relating to the space guide vane of a submersible well pump(250QJ125)on the flow field and pump performance,seven possible configurations have been considered(obtained...In order to study the influence of the wrap angle relating to the space guide vane of a submersible well pump(250QJ125)on the flow field and pump performance,seven possible configurations have been considered(obtained by changing the blade wrap angle while keeping unchanged all the other parameters).Such configurations have been numerically simulated in the framework of a computational model based on the Reynolds time-averaged N-S equations,the RNG k-εturbulence approach and the SIMPLE algorithm.The impact exerted by different wrap angles of the guide vane on the performance of the pump,the internal losses of the guide vane and the flow field distribution in the bladeless area at the guide vane outlet has been assessed via cross-comparison of all these cases.The results show that the wrap angle has a significant influence:the wrap angle with the highest head is different from that with the highest efficiency,and changes in this angle have a more significant effect on the head than efficiency.A moderate raise of the wrap angle can improve the properties of the flow,reduce turbulence losses and enhance the energy conversion rate inside the guide vane.Different wrap angles can also lead to different fluid circulation modes in the bladeless area from guide vane outlet to impeller inlet,while they have a weak influence on the absolute value of the velocity of the fluid entering the impeller.展开更多
The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determine...The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.展开更多
The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 x 5 rod bundle with a s...The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 x 5 rod bundle with a spacer grid. The field synergy principle is used to discuss the mechanism of heat transfer enhancement using mixing vanes according to computational fluid dynamics results, including a spacer grid without mixing vanes, one with a split mixing vane, and one with a separate mixing vane. The results show that the field synergy principle is feasible to explain the mechanism of heat transfer enhancement in a fuel assembly. The enhancement in subchannels is more effective than on the rod's surface. If the pressure loss is ignored, the performance of the split mixing vane is superior to the separate mixing vane based on the enhanced heat transfer. Increasing the blending angle of the split mixing vane improves heat transfer enhancement, the maximum of which is 7.1%. Increasing the blending angle of the separate mixing vane did not significantly enhance heat transfer in the rod btmdle, and even prevented heat transfer at a blending angle of 50%. This fmding testifies to the feasibility of predicting heat transfer in a rod bundle with a spacer grid by field synergy, and upon comparison with analyzed flow features only, the field synergy method may provide more accurate guidance for optimizing the use of mixing vanes.展开更多
The design of axial or radial swirlers typically governs a number of geometrical parameters that are determined by the desired flow field.In the meantime,the number of unknown parameters increases with the number of c...The design of axial or radial swirlers typically governs a number of geometrical parameters that are determined by the desired flow field.In the meantime,the number of unknown parameters increases with the number of concentrically mounted swirlers.The available literature is nonetheless limited,and designers are obligated to increase the number of initial assumptions.In this article,three kinds of triple swirlers are employed and simulations are performed to determine the effect of each parameter on the swirler performance.Based on the correlation provided,overlengthening the radial vane length could result in significant changes in the flow field from the jetlike pattern to a wide swirl-jet angle due to the Coanda effect.Passage width should also have the potential to alter the swirl-jet angle and velocity field at the exit of the swirler.展开更多
The influence of the axial mount position of the guide vane on the pressure fluctuation in a nuclear pump(AP1000)is investigated.The characteristics of the three-dimensional flow inside the nuclear pump are analyzed b...The influence of the axial mount position of the guide vane on the pressure fluctuation in a nuclear pump(AP1000)is investigated.The characteristics of the three-dimensional flow inside the nuclear pump are analyzed by means of numerical simulation.Results indicate that when the axial relative distance between the guide vane and the pumping chamber is reduced,in conditions of“small flow,”the efficiency of the pump increases,the pressure inside the pumping chamber decreases,while the losses related to the guide vane grow.Under large flow conditions,as the efficiency of the pump decreases,the losses for the guide vane and the pumping chamber increase.The pressure fluctuation in the annular pumping chamber is basically determined by the rotation frequency and the blade passing frequency.The magnitude of these fluctuations is affected by the guide vane axial position.In particular,the smallest possible amplitude is obtained when the outlet central plane of the guide vane coincides with the outlet axis of the pumping chamber.展开更多
The effect of clearance flow on the erosion characteristics of a circular cylinder with a backward facing step in sediment-laden water flow is analyzed numerically with the mixture model and the re-normalization group...The effect of clearance flow on the erosion characteristics of a circular cylinder with a backward facing step in sediment-laden water flow is analyzed numerically with the mixture model and the re-normalization group (RNG) k-ε turbulence model. Thirty-six monitoring points are set up on different stream surfaces to collect information on the impact erosion under different flow conditions, where the Initial Sediment Volume Fraction (ISVF) is set to 0.05, 0.075, 0.1, 0.125, and 0.15;particle diameter is set to 0.05 mm, 0.15 mm, 0.25 mm, 0.35 mm, and 0.45 mm respectively. The distribution of particle velocity and Local Solid-Phase Volume Fraction (LSVF) along different stream surfaces are calculated, based on which the trend of erosion is qualitatively evaluated. ISVF and particle diameter play different roles on the impact erosion index parameter () on the different wetted walls. Relative wear rate of numerical estimation agrees well with the practical one under the same working condition. Numerical analysis demonstrates that guide vane with a negative curvature end surface (concave surface) can decrease erosion damage effectively, which may provide a reference for optimal design and maintenance of hydraulic turbine.展开更多
文摘The flow field in the ejector-diffuser system and its optimal operation condition are hardly complicated due to the complicated turbulent mixing, compressibility effects and even flow unsteadiness which are generated inside the ejector- diffuser system. This paper aims at the improvement in ejector-diffuser system by focusing attention on entrainment ratio and pressure recovery. Several mixing guide vanes were installed at the inlet of the secondary stream for the purpose of the performance improvement of the ejector system. A Computational Fluid Dynamics (CFD) method based on Fluent has been applied to simulate the supersonic flows and shock waves inside the ejector. A finite volume scheme and density-based solver with coupled scheme were applied in the computational process. Standard k-ω turbulent model, implicit formulations were used considering the accuracy and stability. Previous experimental results showed that more flow vortexes were generated and more vertical flow was introduced into the stream under a mixing guide vane influence. Besides these effects on the secondary stream, the mixing guide vane effects on the shock system of the primary stream were also investigated in this paper. Optimal analysis results of the mixing guide vane effects were also carried out in detail in terms of the positions, lengths and numbers to achieve the best operation condition. The comparison of ejector performance with and without the mixing guide vane was obtained. The ejector-diffuser system performance is discussed in terms of the entrainment ratio, pressure recovery as well as total pressure loss.
文摘Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.
文摘外涵静子叶片是大涵道比涡扇发动机气路的核心部件之一,外涵静子脱出是一种较为严重的故障模式,此故障可能会导致飞机或其他发动机部件损伤,进而造成灾难性事故。对外涵静子叶片脱出故障的预警是一项重要的工作。但因其早期特征不明显,现有的方法较难对此类故障进行有效的预警。因此,针对该问题,基于监控数据提出一种深度特征提取的支持向量数据域描述(Support vector data description,SVDD)的故障预警方法,以实现对外涵静子叶片脱出故障的早期预警。首先,采用基于发动机气路性能辨识的建模方法,建立发动机特定性能参数的观测模型对气路参数进行深度特征提取,以真实状态量与模型观测量的差值作为航空发动机是否发生故障的特征;然后利用SVDD算法建立决策边界,实现故障数据的自动划分,决策边界生成的阈值可在故障发生之前的一定时间之内给出告警;最后,经过多次计算,结果表明,在故障早期直至故障发生的区间内,表征其健康状态的性能参数都与观测量有较大的偏移,表明了所选特征的有效性。使用数据增强方法生成故障仿真数据与真实数据进行对比验证,预警时间比故障真实发生时间预警模型平均提前3.14 h。
文摘This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Reθ-γtransition model as well as using the high-resolution LES separately.The major secondary flow components,comprising the horseshoe,corner,and passage vortices are recognized and the impact on heat or mass transfer is investigated.The complicated behavior of turbine passage secondary flow generation and establishment are impacted by the perspective of boundary layer attributes and inflow turbulence.The passage vortex concerning the latest big leading-edge vane is generated by the enlargement of the circulation developed at the first instance adjacent to the pressure side becomes powerful and mixes with other vortex systems during its migration towards the suction side.The study conclusions reveal that substantial enhancements are attained on the endwall surface,for the entire spanwise blade extension on the pressure surface,and in the highly 3-D region close to the endwall on the suction surface.The forecasted suction surface thermal exchange depicts great conformity with the measurement values and precisely reproduces the enhanced thermal exchange owing to the development and lateral distribution of the secondary flows along the midspan of the blade passage downstream.The impacts of the different secondary flow structures on the endwall thermal exchange are described in depth.
基金Supported by the National Key Laboratory of Bubble Physics&Natural Circulation(No.51482150104JW0502).
文摘Droplet behavior in the wave-type flow channel is discussed, especially with the secondary .droplet generation due to impingement of droplets on the wall considered. A numerical method is suggested to simulate tile droplet behavior in the flow field. Calculations are compared With experimental data on the ; pressure drop and separating efficiency. Good agreement exists between the calculations and air-water experiments. The numerical method developed gives a reasonable description of the droplet deposition and secondary droplet generation, and it can be applied to predict the performance of wave-type vane separators.
基金This project is supported by National Natural Science Foundation of China(No.50279011).
文摘The calculation method for vane numbers is obtained on the intention that itshould have no back flow area in the flow passage of centrifugal passage. Then a criterion that thedesign of splitting vanes of centrifugal compound impeller should ensure that the back flow arearatio be the minimum is proposed. On the basis of the criterion, the slippery theory is used as oneof CFD methods to analyze the inner flow field of the impeller of various kinds of splitting vanesdesign, therefore, the optimized design of splitting vanes is obtained and which agrees with that ofsome testing results.
文摘The paper presents analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV(particle image velocimetry)and pressure probe traverses.PIV measurements have already been performed at middle height inside one diffuser channel passage for a given speed of rotation and various mass flow rates.These results have been already presented in several previous communications.New experiments have been performed using a three-hole pressure probe traverses from hub to shroud diffuser width at different radial locations between the two diffuser geometrical throats.Numerical simulations are also realized with the commercial codes Star CCM+7.02.011 and CFX.Frozen rotor and fully unsteady calculations of the whole pump have been performed.Comparisons between numerical results,previous experimental PIV results and new probe traverses one's are presented and discussed for one mass flow rate.In this respect,a first attempt to take into account fluid leakages between the rotating and fixed part of the pump has been checked since it may affects the real flow structure inside the diffuser.
基金the National Natural Science Foundation of China(No.11702143 and 11802137)the Fundamental Research Funds for the Central Universities(No.30918011343 and 30919011259).
文摘Due to the pressure gain combustion characteristics,the rotating detonation combustor(RDC)can enhance thermodynamic cycle efficiency.Therefore,the performance of gas-turbine engine can be further improved with this combustion technology.In the present study,the RDC operation performance with a turbine guide vane(TGV)is experimentally investigated.Hydrogen and air are used as propellants while hydrogen and air mass flow rate are about 16.1 g/s and 500 g/s and the equivalence ratio is about 1.0.A pre-detonator is used to ignite the mixture.High-frequency dynamic pressure transducers and silicon pressure sensors are employed to measure pressure oscillations and static pressure in the combustion chamber.The experimental results show that the steady propagation of rotating detonation wave(RDW)is observed in the combustion chamber and the mean propagation velocity is above 1650 m/s,reaching over 84%of theoretical Chapman-Jouguet detonation velocity.Clockwise and counterclockwise propagation directions of RDW are obtained.For clockwise propagation direction,the static pressure is about 15%higher in the combustor compared with counterclockwise propagation direction,but the RDW dominant frequency is lower.When the oblique shock wave propagates across the TGV,the pressure oscillations reduces significantly.In addition,as the detonation products flow through the TGV,the static pressure drops up to 32%and 43%for clockwise and counterclockwise propagation process respectively.
基金supported by the National Natural Science Foundation of China(51009077)State Key Laboratory of Hydroscience and Engineering(2014-KY-05)
文摘Experimental studies of a model pump-turbine S-curve characteristics and its improvement by misaligned guide vanes (MGV) were extended to prototype pump turbine through 3-D transient flow simulations. The unsteady Reynolds-averaged Navier-Stokes equations with the SST turbulence model were used to model the transient flow within the entire flow passage of a reversible pump-turbine with and without misaligned guide vanes during turbine model start-up. The unstable S-curve and its improvement by using misaligned guide vane were verified by model test and simulation. The transient flow calculations were used to clarify the variations of pressure pulse and internal flow behavior in the entire flow passage. The use of misaligned guide vanes can eliminate the S-curve characteristics of a pump-turbine, and can significantly increase the pressure pulse amplitude in the entire flow passage and the runner radial forces during start-up. The MGV only decreased the pulse amplitude on the guide vane suction side when the rotating speed was less than 50% rated speed. The hydraulic reason is that the MGV dramatically changed the flow patterns inside the entire flow passage, and destroyed the symmetry of the flow distribution inside the guide vane and runner.
基金supported by the National Natural Science Foundation of China(No.51469013).
文摘In order to study the influence of the wrap angle relating to the space guide vane of a submersible well pump(250QJ125)on the flow field and pump performance,seven possible configurations have been considered(obtained by changing the blade wrap angle while keeping unchanged all the other parameters).Such configurations have been numerically simulated in the framework of a computational model based on the Reynolds time-averaged N-S equations,the RNG k-εturbulence approach and the SIMPLE algorithm.The impact exerted by different wrap angles of the guide vane on the performance of the pump,the internal losses of the guide vane and the flow field distribution in the bladeless area at the guide vane outlet has been assessed via cross-comparison of all these cases.The results show that the wrap angle has a significant influence:the wrap angle with the highest head is different from that with the highest efficiency,and changes in this angle have a more significant effect on the head than efficiency.A moderate raise of the wrap angle can improve the properties of the flow,reduce turbulence losses and enhance the energy conversion rate inside the guide vane.Different wrap angles can also lead to different fluid circulation modes in the bladeless area from guide vane outlet to impeller inlet,while they have a weak influence on the absolute value of the velocity of the fluid entering the impeller.
基金Supported by the Independent Innovation Foundation for National Defense of Huazhong University of Science and Technology(No.01-18-140019)
文摘The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.
基金Supported by National Natural Science Foundation of China(Grant No.51376022)
文摘The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 x 5 rod bundle with a spacer grid. The field synergy principle is used to discuss the mechanism of heat transfer enhancement using mixing vanes according to computational fluid dynamics results, including a spacer grid without mixing vanes, one with a split mixing vane, and one with a separate mixing vane. The results show that the field synergy principle is feasible to explain the mechanism of heat transfer enhancement in a fuel assembly. The enhancement in subchannels is more effective than on the rod's surface. If the pressure loss is ignored, the performance of the split mixing vane is superior to the separate mixing vane based on the enhanced heat transfer. Increasing the blending angle of the split mixing vane improves heat transfer enhancement, the maximum of which is 7.1%. Increasing the blending angle of the separate mixing vane did not significantly enhance heat transfer in the rod btmdle, and even prevented heat transfer at a blending angle of 50%. This fmding testifies to the feasibility of predicting heat transfer in a rod bundle with a spacer grid by field synergy, and upon comparison with analyzed flow features only, the field synergy method may provide more accurate guidance for optimizing the use of mixing vanes.
基金supported by Korea Electric Power Corporation through Korea Electrical Engineering and Science Research Institute(Grant 18B-022)
文摘The design of axial or radial swirlers typically governs a number of geometrical parameters that are determined by the desired flow field.In the meantime,the number of unknown parameters increases with the number of concentrically mounted swirlers.The available literature is nonetheless limited,and designers are obligated to increase the number of initial assumptions.In this article,three kinds of triple swirlers are employed and simulations are performed to determine the effect of each parameter on the swirler performance.Based on the correlation provided,overlengthening the radial vane length could result in significant changes in the flow field from the jetlike pattern to a wide swirl-jet angle due to the Coanda effect.Passage width should also have the potential to alter the swirl-jet angle and velocity field at the exit of the swirler.
基金supported by the National Natural Science Foundation of China(No.51469013).
文摘The influence of the axial mount position of the guide vane on the pressure fluctuation in a nuclear pump(AP1000)is investigated.The characteristics of the three-dimensional flow inside the nuclear pump are analyzed by means of numerical simulation.Results indicate that when the axial relative distance between the guide vane and the pumping chamber is reduced,in conditions of“small flow,”the efficiency of the pump increases,the pressure inside the pumping chamber decreases,while the losses related to the guide vane grow.Under large flow conditions,as the efficiency of the pump decreases,the losses for the guide vane and the pumping chamber increase.The pressure fluctuation in the annular pumping chamber is basically determined by the rotation frequency and the blade passing frequency.The magnitude of these fluctuations is affected by the guide vane axial position.In particular,the smallest possible amplitude is obtained when the outlet central plane of the guide vane coincides with the outlet axis of the pumping chamber.
文摘The effect of clearance flow on the erosion characteristics of a circular cylinder with a backward facing step in sediment-laden water flow is analyzed numerically with the mixture model and the re-normalization group (RNG) k-ε turbulence model. Thirty-six monitoring points are set up on different stream surfaces to collect information on the impact erosion under different flow conditions, where the Initial Sediment Volume Fraction (ISVF) is set to 0.05, 0.075, 0.1, 0.125, and 0.15;particle diameter is set to 0.05 mm, 0.15 mm, 0.25 mm, 0.35 mm, and 0.45 mm respectively. The distribution of particle velocity and Local Solid-Phase Volume Fraction (LSVF) along different stream surfaces are calculated, based on which the trend of erosion is qualitatively evaluated. ISVF and particle diameter play different roles on the impact erosion index parameter () on the different wetted walls. Relative wear rate of numerical estimation agrees well with the practical one under the same working condition. Numerical analysis demonstrates that guide vane with a negative curvature end surface (concave surface) can decrease erosion damage effectively, which may provide a reference for optimal design and maintenance of hydraulic turbine.