In order to analyze the influence of vapor cloud shape on temperature field effect of unconfined vapor cloud explosion(UVCE)and obtain creditable prediction method of explosion temperature effect,the transient tempera...In order to analyze the influence of vapor cloud shape on temperature field effect of unconfined vapor cloud explosion(UVCE)and obtain creditable prediction method of explosion temperature effect,the transient temperature fields of cylindrical and hemispherical UVCEs with same methane concentration and mass were numerically studied by computational fluid dynamics(CFD)technology.According to numerical simulation results, the concepts of UVCE’s temperature-near-field and temperature-far-field were proposed,the corresponding ranges were given,and the temperature attenuation laws and differences in corresponding regions with different vapor cloud shapes were presented.Through comparing with Baker fireball model,the accuracy and visualizability in acquisition of entire temperature effect based on numerical simulation were further validated.The functional relations among maximum temperature,horizontal distance,initial temperature and vapor cloud mass in temperature-near-field and temperature-far-field were deduced by means of data fitting,respectively.These conclusions provided quantitative basis for forecast and protection of UVCE disaster.展开更多
Oil spill-induced vapor cloud explosions in a confined space can cause catastrophic consequences.In this work,investigation was conducted on the catastrophic pipeline leak,oil spill,and the resulting vapor cloud explo...Oil spill-induced vapor cloud explosions in a confined space can cause catastrophic consequences.In this work,investigation was conducted on the catastrophic pipeline leak,oil spill,and the resulting vapor cloud explosion accident occurring in China in 2013 by modeling analysis,field surveys,and numerical simulations.The total amount of the spilled oil was up to2044.4 m3 due to improper disposal.The long residence time of the oil remaining in a confined space permitted the formation of explosive mixtures and caused the vapor cloud explosion.A numerical model was developed to estimate the consequence of the explosion based on volatilization testing results.The results show that the death-leading zone and the glass-breaking zone could be 18 m and 92 m,respectively,which are consistent with the field investigation.The severity of the explosion is related to the amount of the oil spill,properties of oil,and volatilization time.It is recommended that a comprehensive risk assessment be conducted to analyze the possible consequences upon oil spilling into a confined space.Prompt collection and ventilation measures should be taken immediately after the spill occurs to reduce the time for oil volatilization and prevent the mixture from reaching its explosive limit.展开更多
An experimental system was setup to study the pressure field of unconfined vapor cloud explosions. The semi-spherical vapor clouds were formed by slotted 0.02mm polyethylene film. In the center of the cloud was an ign...An experimental system was setup to study the pressure field of unconfined vapor cloud explosions. The semi-spherical vapor clouds were formed by slotted 0.02mm polyethylene film. In the center of the cloud was an ignition electrode that met ISO6164 'Explosion Protection System' and NFPA68 'Guide for Venting of Deflagrations'. A data-acquisition system, with dynamic responding time less than 0.001s with 0.5% accuracy, recorded the pressure-time diagram of acetylene-air mixture explosion with stoichiometrical ratio. The initial cloud diameters varied from 60 cm to 300 cm. Based on the analysis of experimental data, the quantitative relationship is obtained for the cloud explosion pressure, the cloud radius and the distance from ignition point. Present results provide a useful way to evaluate the building damage caused by unconfined vapor cloud explosions and to determine the indispensable explosion grade in the application of multi-energy model.展开更多
基金Supported by the National Natural Science Foundation of China(10772029) the Ph.D Programs Foundation of Ministry of Education of China(20050007029) the Independent Research Subject of State Key Laboratory of Explosion Science and Technology(ZDKT08-02)
文摘In order to analyze the influence of vapor cloud shape on temperature field effect of unconfined vapor cloud explosion(UVCE)and obtain creditable prediction method of explosion temperature effect,the transient temperature fields of cylindrical and hemispherical UVCEs with same methane concentration and mass were numerically studied by computational fluid dynamics(CFD)technology.According to numerical simulation results, the concepts of UVCE’s temperature-near-field and temperature-far-field were proposed,the corresponding ranges were given,and the temperature attenuation laws and differences in corresponding regions with different vapor cloud shapes were presented.Through comparing with Baker fireball model,the accuracy and visualizability in acquisition of entire temperature effect based on numerical simulation were further validated.The functional relations among maximum temperature,horizontal distance,initial temperature and vapor cloud mass in temperature-near-field and temperature-far-field were deduced by means of data fitting,respectively.These conclusions provided quantitative basis for forecast and protection of UVCE disaster.
基金supported by China Scholarship Council(201809110035)the State Key Research and Development Plan Project of China(2016YFC0801500).
文摘Oil spill-induced vapor cloud explosions in a confined space can cause catastrophic consequences.In this work,investigation was conducted on the catastrophic pipeline leak,oil spill,and the resulting vapor cloud explosion accident occurring in China in 2013 by modeling analysis,field surveys,and numerical simulations.The total amount of the spilled oil was up to2044.4 m3 due to improper disposal.The long residence time of the oil remaining in a confined space permitted the formation of explosive mixtures and caused the vapor cloud explosion.A numerical model was developed to estimate the consequence of the explosion based on volatilization testing results.The results show that the death-leading zone and the glass-breaking zone could be 18 m and 92 m,respectively,which are consistent with the field investigation.The severity of the explosion is related to the amount of the oil spill,properties of oil,and volatilization time.It is recommended that a comprehensive risk assessment be conducted to analyze the possible consequences upon oil spilling into a confined space.Prompt collection and ventilation measures should be taken immediately after the spill occurs to reduce the time for oil volatilization and prevent the mixture from reaching its explosive limit.
基金Supported by the National Natural Science Foundation of China(No. 50076006).
文摘An experimental system was setup to study the pressure field of unconfined vapor cloud explosions. The semi-spherical vapor clouds were formed by slotted 0.02mm polyethylene film. In the center of the cloud was an ignition electrode that met ISO6164 'Explosion Protection System' and NFPA68 'Guide for Venting of Deflagrations'. A data-acquisition system, with dynamic responding time less than 0.001s with 0.5% accuracy, recorded the pressure-time diagram of acetylene-air mixture explosion with stoichiometrical ratio. The initial cloud diameters varied from 60 cm to 300 cm. Based on the analysis of experimental data, the quantitative relationship is obtained for the cloud explosion pressure, the cloud radius and the distance from ignition point. Present results provide a useful way to evaluate the building damage caused by unconfined vapor cloud explosions and to determine the indispensable explosion grade in the application of multi-energy model.