Young's equation is a fundamental equation in capillarity and wetting, which reflects the balance of the horizontal components of the three interracial tensions with the contact angle (CA). However, it does not con...Young's equation is a fundamental equation in capillarity and wetting, which reflects the balance of the horizontal components of the three interracial tensions with the contact angle (CA). However, it does not consider the vertical component of the liquid-vapor interracial tension (VCLVIT). It is now well understood that the VCLVIT causes the elastic deformation of the solid substrate, which plays a significant role in the fabrication of the microfluidic devices because of the wide use of the soft materials. In this paper, the theoretical, experimental, and numerical aspects of the problem are reviewed. The effects of the VCLVIT-induced surface deformation on the wetting and spreading, the deflection of the microcantilever, and the elasto.capillarity and electro- elasto.capillarity are discussed. Besides a brief review on the historical development and the recent advances, some suggestions on the future research are also provided. Key words展开更多
Evaporation of sessile water droplet on polydimethylsiloxane (PDMS) surfaces with three different curing ratios (5:1, 10:1, and 20:1) was experimentally investigated in this paper. We show that the constant con...Evaporation of sessile water droplet on polydimethylsiloxane (PDMS) surfaces with three different curing ratios (5:1, 10:1, and 20:1) was experimentally investigated in this paper. We show that the constant contact radius (CCR) evaporation on surface with high curing ratio lasts longer than that with low curing ratio. We also measured Young's moduli of PDMS films by using atomic force microscopy (AFM) and simulated surface deformation of PDMS films induced by sessile water droplet. With increasing curing ratio of PDMS film, Young's modulus of PDMS film is getting lower, and then there will be larger surface deformation and more elastic stored energy. Since such energy acts as a barrier to keep the three-phase contact line pinned, thus it will result in longer CCR evaporation on PDMS surface with higher curing ratio.展开更多
为了准确计算页岩油气储层中的界面张力,基于修正的Soave⁃Redlich⁃Kwong状态方程(SRK EoS)和修正的van der Waals(vdW)混合规则,建立一个预测纳米孔中油气界面张力的状态方程模型,该模型能描述纳米孔中孔隙半径和分子—分子间相互作用...为了准确计算页岩油气储层中的界面张力,基于修正的Soave⁃Redlich⁃Kwong状态方程(SRK EoS)和修正的van der Waals(vdW)混合规则,建立一个预测纳米孔中油气界面张力的状态方程模型,该模型能描述纳米孔中孔隙半径和分子—分子间相互作用的影响。将状态方程与等张比容模型结合,建立基于气液相平衡的界面张力计算模型,并提出具体计算方法。建立的SRK模型与vdW模型和实验数据对比表明:在相同的温度下,随着压力的升高,甲烷-正葵烷(C_(1)⁃nC_(10))和氮气-正葵烷(C_(2)⁃nC_(10))混合物在纳米孔中的界面张力逐渐减小,SRK和vdW模型均能准确地预测界面张力,但SRK模型的计算结果更准确。在298.15 K和326.15 K,SRK模型计算的C_(1)⁃nC_(10)混合物的平均绝对相对偏差为12.42%和7.11%,而C_(2)⁃nC_(10)混合物为2.83%和3.85%。vdW模型计算的C_(1)⁃nC_(10)混合物的平均绝对相对偏差为17.10%和4.24%,而C_(2)⁃nC_(10)混合物为3.98%和7.53%。通过SRK模型对体积相和纳米孔中的界面张力预测表明:在相同的温度压力条件下,体积相中的C_(1)⁃nC_(10)和C_(2)⁃nC_(10)混合物界面张力大于纳米孔中的界面张力。对不同孔隙半径的纳米孔中的界面张力预测表明:随着孔隙半径的减小,混合物的界面张力逐渐减小,且在较低的压力下,孔隙半径越小,界面张力的减小程度越大,而在较高的压力下,由于界面张力比较小,孔隙半径的影响也较小。提出的SRK模型能准确地预测纳米孔中的界面张力,为预测纳米孔中油气界面张力提供了一种新思路。展开更多
基金Project supported by the National Natural Science Foundation of China (No. 11002051)
文摘Young's equation is a fundamental equation in capillarity and wetting, which reflects the balance of the horizontal components of the three interracial tensions with the contact angle (CA). However, it does not consider the vertical component of the liquid-vapor interracial tension (VCLVIT). It is now well understood that the VCLVIT causes the elastic deformation of the solid substrate, which plays a significant role in the fabrication of the microfluidic devices because of the wide use of the soft materials. In this paper, the theoretical, experimental, and numerical aspects of the problem are reviewed. The effects of the VCLVIT-induced surface deformation on the wetting and spreading, the deflection of the microcantilever, and the elasto.capillarity and electro- elasto.capillarity are discussed. Besides a brief review on the historical development and the recent advances, some suggestions on the future research are also provided. Key words
基金supported by the National Natural Science Foundation of China(11002051,11072244,and 11372313)the Key Research Program of the Chinese Academy of Sciences(KJZDEW-M01)the Instrument Developing Project of the Chinese Academy of Sciences(Y2010031)
文摘Evaporation of sessile water droplet on polydimethylsiloxane (PDMS) surfaces with three different curing ratios (5:1, 10:1, and 20:1) was experimentally investigated in this paper. We show that the constant contact radius (CCR) evaporation on surface with high curing ratio lasts longer than that with low curing ratio. We also measured Young's moduli of PDMS films by using atomic force microscopy (AFM) and simulated surface deformation of PDMS films induced by sessile water droplet. With increasing curing ratio of PDMS film, Young's modulus of PDMS film is getting lower, and then there will be larger surface deformation and more elastic stored energy. Since such energy acts as a barrier to keep the three-phase contact line pinned, thus it will result in longer CCR evaporation on PDMS surface with higher curing ratio.
文摘基于电子束焊接过程的传热与受力物理过程分析,建立相应模型,对电子束定点焊接304不锈钢的温度场与流场进行数值模拟,研究电子束焊接熔池流动行为及焊缝成形规律.结果表明,电子束加热阶段,熔池上表面温度梯度达到106K/m,熔池表面峰值温度高,在沸点温度附近波动,强烈的金属蒸汽反作用力成为熔池流动的主要作用力,促使熔池中心下凹并不断波动,熔池冷却凝固阶段,金属蒸汽反作用力下降,熔池金属表面张力梯度引起的Marangoni对流成为熔池金属流动主要驱动力,促使焊缝表面熔宽增大,熔池凝固后焊缝上表面宽度为1.9 mm,中心处宽度为1.6 mm,下表面宽度为1.8 mm.