In this article VLE data for a ternary system (propylene-methanol-water) under 30~60 C,0. 3~0. 9 MPa with a mass ratio of methanol to water of 9:1, 8: 2, 7: 3 were determined with a static equilibrium still, and wer...In this article VLE data for a ternary system (propylene-methanol-water) under 30~60 C,0. 3~0. 9 MPa with a mass ratio of methanol to water of 9:1, 8: 2, 7: 3 were determined with a static equilibrium still, and were correlated by using Peng-Robinson model. The average relative error ofpropylene concentration in liquid phase is 1. 46 %. The results indicate that the models are very suitablefor the ternary system and the data are reliable.展开更多
An experimental system for measuring the VLE of polymer solutions based on the staticvapor-pressure method has been established,VLE data for mixtures of toluene and polystyrene withdifferent molecular weight covering ...An experimental system for measuring the VLE of polymer solutions based on the staticvapor-pressure method has been established,VLE data for mixtures of toluene and polystyrene withdifferent molecular weight covering a wide range from 2.98×10~3 to 3.84×10~6 were obtained at 35℃.The reduced pressure p/p°versus weight fraction W plot is found to be independent on the molecularweight of the polymer within the experimental error.Calculated activity coefficients are also independenton the molecular weight.However,for the Flory-Huggins interaction parameter x,not only a strongconcentration dependence is observed,but also the molecular weight of the polymer exerts definiteinfluence.Generally,the parameter x slightly increases as the molecular weight of the polymer decreasesespecially when the molecular weight is low.The dependence of the parameter x on the molecularweight can be neglected when the molecular weight of polymer is greater than 1.00×10~4.展开更多
Vapor-liquid equilibria for water+hydrochloric acid+magnesium chloride and water+hydrochloric acid+calcium chloride systems at atmospheric pressure were measured using a Othmer-type equilibrium still. The experimental...Vapor-liquid equilibria for water+hydrochloric acid+magnesium chloride and water+hydrochloric acid+calcium chloride systems at atmospheric pressure were measured using a Othmer-type equilibrium still. The experimental data are correlated using a modified Meissner’s method. Satisfactory agreements are obtained between the experimental and the calculated results.展开更多
The aim of this work is to apply cubic equations of state(EOS)to vapor-liquid equilibriacalculations of gas-heavy hydrocarbon systems,which are asymmetric in molecular size and areusually found in natural gases.Invest...The aim of this work is to apply cubic equations of state(EOS)to vapor-liquid equilibriacalculations of gas-heavy hydrocarbon systems,which are asymmetric in molecular size and areusually found in natural gases.Investigation has been done to test the validity of the original PSRKand the cubic simplified perturbed hard-chain(CSPhC)models for global phase diagrams.Thecalculation results show that both equations overpredict vapor pressure in the near critical region.In the prediction of the solubilities of high molecular weight(MW)hydrocarbons in the naturalgas,the PSRK model gives good agreement for the dew point pressure-vapor composition diagrams.Adjustment of the pure component parameters of the CSPHC EOS for heavy components to fit thevapor-liquid equilibrium(VLE)data has been proved to give significant promoting in predictionaccuracy.However,further improvement of a van der Waals EOS,such as SRK,PT and DG modelsfor the asymmetric systems by adjusting the three pure component properties,T_c, p_c and ?展开更多
A new excess Gibbs free energy/equation of state type mixing 0rule was derived byremoving the infinite pressure boundary condition imposed by Wong and Sandler.The mixing rulewas extensively tested in terms of a compre...A new excess Gibbs free energy/equation of state type mixing 0rule was derived byremoving the infinite pressure boundary condition imposed by Wong and Sandler.The mixing rulewas extensively tested in terms of a comprehensive data base,consisting of 52 simple nonpolar-nonpolar,carbon dioxide containing,hydrocarbon-hydrocarbon,CFC,polar-polar,nonpolar-polarbinary and multicomponent systems.Focused on the complete predictive capability,a comparisonbetween the Wong-Sandler and the mixing rule proposed was conducted.The results indicate that thenew mixing rule is in general superior to the Wong-Sandler’s,and the binary interaction parameteras required by the latter is removed,which reduces computing effort and is reliable in predictions ofvapor-liquid equilibria from low pressures to high pressures.展开更多
The Soave[1]equation of state is extensively accepted because of its accuracy andsimplicity.In 1988,Tan et al.[2]suggested a modification by introducing atemperature-dependent factor to parameter"b"on the ba...The Soave[1]equation of state is extensively accepted because of its accuracy andsimplicity.In 1988,Tan et al.[2]suggested a modification by introducing atemperature-dependent factor to parameter"b"on the basis of statistical meaning,anda good accuracy was obtained for supercritical fluids as well as fluids approaching criti-cal conditions but not for mixtures.In the previous work,an extended Soave equa-tion of state[3]has been proposed to improve the prediction of liquid density.In thispaper,the extended equation is used to calculate vapor-liquid equilibria of mixtures atsubcritical conditions.展开更多
Vapor-liquid equilibrium data of hexamethyl disiloxane+vinyl acetate system at 101.3kPa were measured by using double circulating vapor-liquid equilibrium still.The thermodynamic consistency of the VLE data was examin...Vapor-liquid equilibrium data of hexamethyl disiloxane+vinyl acetate system at 101.3kPa were measured by using double circulating vapor-liquid equilibrium still.The thermodynamic consistency of the VLE data was examined by Herrington method.Experimental data was correlated by non-random two-liquid(NRTL),Wilson and universal quasichemical(UNIQUAC)parameter models.All the models satisfactorily correlated with the VLE data.The result showed that the NRTL model was the most suitable one to represent experimental data satisfactorily.The system had a minimum temperature azeotrope at 345.71 K and the mole azeotropic composition was 0.0541.展开更多
In this paper, the LCVM mixing rule is extended to the multi-parameter equations of state by combining infi- nite-pressure and zero-pressure mixing rule models. The new LCVM-type mixing rule, coupled with Patel-Teja e...In this paper, the LCVM mixing rule is extended to the multi-parameter equations of state by combining infi- nite-pressure and zero-pressure mixing rule models. The new LCVM-type mixing rule, coupled with Patel-Teja equation of state (EOS) is applied for vapor-liquid equilibria of different polar and non-polar systems in which the NRTL activity coefficient model is used to calculate the excess Gibbs free energy. The tested results agree well with existing experimental data within a wide range of temperatures and pressures. In comparison with the Van der Waals mixing rule, the new mixing rule gives much better corre- lations for the vapor-liquid equilibria of non-polar and polar systems.展开更多
The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A se...The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications.展开更多
There are limited Vapor-Liquid Equilibrium(VLE) data in cluding N-formylmorpholine(NFM) for the design of the extractive distil lation process using NFM as solvent.The new interaction parameters of UNIFAC mo del w...There are limited Vapor-Liquid Equilibrium(VLE) data in cluding N-formylmorpholine(NFM) for the design of the extractive distil lation process using NFM as solvent.The new interaction parameters of UNIFAC mo del were fitted with experimental data between CH2,ACH and NFM which was rega rded as a main group.Comparison of the prediction results of VLE data and infin ite dilution activity coefficients with other published methods of group divisio n for NFM, indicated more satisfying results with the interaction parameters of this paper. The four methods of group division for NFM were discussed based on the group division for ring molecule and group charge distribution. The group c harge distribution at the minimum energy state was calculated by the AM1 method in Chem3D Pro. The good theoretical basis was presented for the group division of NFM.展开更多
In the current work five different solvent blends are experimentally studied and the reboiler duties are calculated using the so-called short-cut method.Tertiary amines,2-(diethylamino)ethanol(DEEA),3-(Diethylamino)-1...In the current work five different solvent blends are experimentally studied and the reboiler duties are calculated using the so-called short-cut method.Tertiary amines,2-(diethylamino)ethanol(DEEA),3-(Diethylamino)-1,2-propanediol(DEA-12PD),2-[2-(Diethylamino)ethoxy]ethanol(DEA-EO),1-(2-Hydroxyethyl)piperidine(12HE-PP)are blended with 3-(Methylamino)propylamine(MAPA)and ethanolamine(MEA).The first results from simple solvent screening are given and the cyclic capacities are calculated based data at 40℃ and 80℃.Then,five solvent systems are chosen for vapor–liquid equilibrium characterization.The vapor–liquid equilibrium data are then used to estimate cyclic capacities at more realistic temperatures,between 40℃ and 120℃ and by using a short-cut method proposed in the literature the reboiler duties of the characterized solvents are estimated.Finally,the potential of the studied systems is discussed.Several of the characterized blends showed reboiler duties around 2.5 MJ kgCO2^-1.展开更多
To provide an accurate prediction of the product component dependence of temperature and pressure in vacuum distillation and give convenient and efficient guidance for the designing of the process parameters of indust...To provide an accurate prediction of the product component dependence of temperature and pressure in vacuum distillation and give convenient and efficient guidance for the designing of the process parameters of industrial production, according to the molecular interaction volume model(MIVM), the separation coefficient(β) and vapor-liquid equilibrium composition of Au-Ag alloy at different temperatures are calculated. Combined with the vapor-liquid equilibrium(VLE) theory, the VLE phase diagrams, including the temperature-composition(T-x) and pressure-composition(p-x) diagrams of Au-Ag alloy in vacuum distillation are plotted. The triple points and condensation temperatures of gold and silver vapors are calculated as well. The results show that the β decreases and the contents of gold in vapor phase increase with the distillation temperature increasing. Low pressures have positive effect on the separation of Ag and Au. The difference between the condensation temperatures of gold and silver is about 450 K in the pressure range of 1-10 Pa.展开更多
Isobaric vapor-liquid equilibria (VLE) are experimentally measured for the binary systems of dimethyl carbonate (DMC)+ ethylene carbonate and methanol + ethylene carbonate at 101.325kPa. The thermodynamic consistency ...Isobaric vapor-liquid equilibria (VLE) are experimentally measured for the binary systems of dimethyl carbonate (DMC)+ ethylene carbonate and methanol + ethylene carbonate at 101.325kPa. The thermodynamic consistency of these experimental data is tested with an available statistic method. Interaction parameters of the carbonate group -OCOO- with the group -CH3, ACH, CH3OH and CH3COO- in UNIFAC model are determined using the experimental and literature VLE data. The results show that the calculated VLE data using the new UNIFAC parameters agree excellently with the experimental data in this work and in literature. These results are useful in the research on DMC and diphenyl carbonate synthesis by transesterification in design of reactor and distillation tower.展开更多
In 1987, the Montreal Protocol prohibited the worldwide use and production of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) and hydro fluorocarbons (HFCs) were proposed as alternative refrigerants. U...In 1987, the Montreal Protocol prohibited the worldwide use and production of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) and hydro fluorocarbons (HFCs) were proposed as alternative refrigerants. Unfortunately, HFCs have non negligible global warning potential and therefore new refrigerants must be proposed or old refrigerants must be used associated with HFC. Accurate experimental thermodynamic data and predictive techniques are required for better under-standing of the performance of the newly proposed refrigerants. In this communication, experimental techniques based on either analytic or synthetic methods are first described. Data are reported. Then two newly developed predictive models based on thermodynamic approach with the isofugacity criterion and artificial neural network method are presented. The results can provide better evaluation of refrigerants, especially with the aim of studying global warning effects.展开更多
A four-parameter, Ghoderao–Dalvi–Narayan 2 cubic equation of state(GDN2 CEOS), is presented which incorporates the following: 1. The experimental value of the critical compressibility factor has been used as a fixed...A four-parameter, Ghoderao–Dalvi–Narayan 2 cubic equation of state(GDN2 CEOS), is presented which incorporates the following: 1. The experimental value of the critical compressibility factor has been used as a fixed input parameter for calculations;2. All the parameters(a, b, c, d) of CEOS are temperature dependent functions in the subcritical region and are temperature independent functions in the supercritical region and;3. A new α function is introduced with two compound specific parameters which are estimated by matching saturated vapor pressure at two fixed temperature points Tr= 0.5, 0.7. Our formalism enables us to cast three of the four parameters of the CEOS as a function of the remaining parameter. The proposed CEOS is used to predict properties of 334 pure compounds, including saturated vapor pressure and liquid density, compressed liquid density, heat capacities at the constant pressure and volume, enthalpy of vaporization, sound velocity. To calculate thermodynamic properties of a pure compound, the present CEOS require the critical temperature, the critical pressure, the Pitzer’s acentric factor, the critical compressibility factor, and two parameters of the alpha function. The saturated liquid density predictions for pure fluids are very accurate when compared with GDN1(Ghoderao–Dalvi–Narayan 1),MPR(Modified Peng–Robinson), and PT(Patel–Teja) equations of state. Unlike MPR EOS, the proposed temperature dependent covolume parameter b in the present work satisfies all the constraints mentioned in the literature to avoid thermodynamic inconsistencies at the extreme temperature and pressure. Using van der Waals one-fluid mixing rule, the present CEOS is further used to predict bubble pressure and the vapor mole fraction of binary mixtures.展开更多
文摘In this article VLE data for a ternary system (propylene-methanol-water) under 30~60 C,0. 3~0. 9 MPa with a mass ratio of methanol to water of 9:1, 8: 2, 7: 3 were determined with a static equilibrium still, and were correlated by using Peng-Robinson model. The average relative error ofpropylene concentration in liquid phase is 1. 46 %. The results indicate that the models are very suitablefor the ternary system and the data are reliable.
文摘An experimental system for measuring the VLE of polymer solutions based on the staticvapor-pressure method has been established,VLE data for mixtures of toluene and polystyrene withdifferent molecular weight covering a wide range from 2.98×10~3 to 3.84×10~6 were obtained at 35℃.The reduced pressure p/p°versus weight fraction W plot is found to be independent on the molecularweight of the polymer within the experimental error.Calculated activity coefficients are also independenton the molecular weight.However,for the Flory-Huggins interaction parameter x,not only a strongconcentration dependence is observed,but also the molecular weight of the polymer exerts definiteinfluence.Generally,the parameter x slightly increases as the molecular weight of the polymer decreasesespecially when the molecular weight is low.The dependence of the parameter x on the molecularweight can be neglected when the molecular weight of polymer is greater than 1.00×10~4.
文摘Vapor-liquid equilibria for water+hydrochloric acid+magnesium chloride and water+hydrochloric acid+calcium chloride systems at atmospheric pressure were measured using a Othmer-type equilibrium still. The experimental data are correlated using a modified Meissner’s method. Satisfactory agreements are obtained between the experimental and the calculated results.
基金Supported by the National Natural Science Foundation of China and the DAAD-K-C.Wong Foundation.
文摘The aim of this work is to apply cubic equations of state(EOS)to vapor-liquid equilibriacalculations of gas-heavy hydrocarbon systems,which are asymmetric in molecular size and areusually found in natural gases.Investigation has been done to test the validity of the original PSRKand the cubic simplified perturbed hard-chain(CSPhC)models for global phase diagrams.Thecalculation results show that both equations overpredict vapor pressure in the near critical region.In the prediction of the solubilities of high molecular weight(MW)hydrocarbons in the naturalgas,the PSRK model gives good agreement for the dew point pressure-vapor composition diagrams.Adjustment of the pure component parameters of the CSPHC EOS for heavy components to fit thevapor-liquid equilibrium(VLE)data has been proved to give significant promoting in predictionaccuracy.However,further improvement of a van der Waals EOS,such as SRK,PT and DG modelsfor the asymmetric systems by adjusting the three pure component properties,T_c, p_c and ?
基金Supported by the National Natural Science Foundation of China(No.29676003)and China Petro-chemical.Corporation.
文摘A new excess Gibbs free energy/equation of state type mixing 0rule was derived byremoving the infinite pressure boundary condition imposed by Wong and Sandler.The mixing rulewas extensively tested in terms of a comprehensive data base,consisting of 52 simple nonpolar-nonpolar,carbon dioxide containing,hydrocarbon-hydrocarbon,CFC,polar-polar,nonpolar-polarbinary and multicomponent systems.Focused on the complete predictive capability,a comparisonbetween the Wong-Sandler and the mixing rule proposed was conducted.The results indicate that thenew mixing rule is in general superior to the Wong-Sandler’s,and the binary interaction parameteras required by the latter is removed,which reduces computing effort and is reliable in predictions ofvapor-liquid equilibria from low pressures to high pressures.
文摘The Soave[1]equation of state is extensively accepted because of its accuracy andsimplicity.In 1988,Tan et al.[2]suggested a modification by introducing atemperature-dependent factor to parameter"b"on the basis of statistical meaning,anda good accuracy was obtained for supercritical fluids as well as fluids approaching criti-cal conditions but not for mixtures.In the previous work,an extended Soave equa-tion of state[3]has been proposed to improve the prediction of liquid density.In thispaper,the extended equation is used to calculate vapor-liquid equilibria of mixtures atsubcritical conditions.
文摘Vapor-liquid equilibrium data of hexamethyl disiloxane+vinyl acetate system at 101.3kPa were measured by using double circulating vapor-liquid equilibrium still.The thermodynamic consistency of the VLE data was examined by Herrington method.Experimental data was correlated by non-random two-liquid(NRTL),Wilson and universal quasichemical(UNIQUAC)parameter models.All the models satisfactorily correlated with the VLE data.The result showed that the NRTL model was the most suitable one to represent experimental data satisfactorily.The system had a minimum temperature azeotrope at 345.71 K and the mole azeotropic composition was 0.0541.
基金Project (No. 50276054) supported by the National Natural Science Foundation of China
文摘In this paper, the LCVM mixing rule is extended to the multi-parameter equations of state by combining infi- nite-pressure and zero-pressure mixing rule models. The new LCVM-type mixing rule, coupled with Patel-Teja equation of state (EOS) is applied for vapor-liquid equilibria of different polar and non-polar systems in which the NRTL activity coefficient model is used to calculate the excess Gibbs free energy. The tested results agree well with existing experimental data within a wide range of temperatures and pressures. In comparison with the Van der Waals mixing rule, the new mixing rule gives much better corre- lations for the vapor-liquid equilibria of non-polar and polar systems.
基金supported by the National Natural Science Foundation of China(21908234)the National Key Research&Development Program of China(2020YFB0606404)+1 种基金the Inner Mongolia Science and Technology Agency Program(2019CG058)Shanxi Province Natural Science Foundation(202103021223063).
文摘The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications.
文摘There are limited Vapor-Liquid Equilibrium(VLE) data in cluding N-formylmorpholine(NFM) for the design of the extractive distil lation process using NFM as solvent.The new interaction parameters of UNIFAC mo del were fitted with experimental data between CH2,ACH and NFM which was rega rded as a main group.Comparison of the prediction results of VLE data and infin ite dilution activity coefficients with other published methods of group divisio n for NFM, indicated more satisfying results with the interaction parameters of this paper. The four methods of group division for NFM were discussed based on the group division for ring molecule and group charge distribution. The group c harge distribution at the minimum energy state was calculated by the AM1 method in Chem3D Pro. The good theoretical basis was presented for the group division of NFM.
基金Financial support from the Research Council of Norway through project 3GMC (3rd Generation Solvent Membrane Contactor, Project No. 239789)
文摘In the current work five different solvent blends are experimentally studied and the reboiler duties are calculated using the so-called short-cut method.Tertiary amines,2-(diethylamino)ethanol(DEEA),3-(Diethylamino)-1,2-propanediol(DEA-12PD),2-[2-(Diethylamino)ethoxy]ethanol(DEA-EO),1-(2-Hydroxyethyl)piperidine(12HE-PP)are blended with 3-(Methylamino)propylamine(MAPA)and ethanolamine(MEA).The first results from simple solvent screening are given and the cyclic capacities are calculated based data at 40℃ and 80℃.Then,five solvent systems are chosen for vapor–liquid equilibrium characterization.The vapor–liquid equilibrium data are then used to estimate cyclic capacities at more realistic temperatures,between 40℃ and 120℃ and by using a short-cut method proposed in the literature the reboiler duties of the characterized solvents are estimated.Finally,the potential of the studied systems is discussed.Several of the characterized blends showed reboiler duties around 2.5 MJ kgCO2^-1.
基金supported by the National Natural Science Foundation of China (No.52064029)Yunling Scholarship of Yunnan Province Ten-Thousand Plan,China (No.KKRC201952012)Yunnan Province Ten Thousand Talents Program-Youth Top Talent Project,China (No.2018-73)。
文摘To provide an accurate prediction of the product component dependence of temperature and pressure in vacuum distillation and give convenient and efficient guidance for the designing of the process parameters of industrial production, according to the molecular interaction volume model(MIVM), the separation coefficient(β) and vapor-liquid equilibrium composition of Au-Ag alloy at different temperatures are calculated. Combined with the vapor-liquid equilibrium(VLE) theory, the VLE phase diagrams, including the temperature-composition(T-x) and pressure-composition(p-x) diagrams of Au-Ag alloy in vacuum distillation are plotted. The triple points and condensation temperatures of gold and silver vapors are calculated as well. The results show that the β decreases and the contents of gold in vapor phase increase with the distillation temperature increasing. Low pressures have positive effect on the separation of Ag and Au. The difference between the condensation temperatures of gold and silver is about 450 K in the pressure range of 1-10 Pa.
文摘Isobaric vapor-liquid equilibria (VLE) are experimentally measured for the binary systems of dimethyl carbonate (DMC)+ ethylene carbonate and methanol + ethylene carbonate at 101.325kPa. The thermodynamic consistency of these experimental data is tested with an available statistic method. Interaction parameters of the carbonate group -OCOO- with the group -CH3, ACH, CH3OH and CH3COO- in UNIFAC model are determined using the experimental and literature VLE data. The results show that the calculated VLE data using the new UNIFAC parameters agree excellently with the experimental data in this work and in literature. These results are useful in the research on DMC and diphenyl carbonate synthesis by transesterification in design of reactor and distillation tower.
文摘In 1987, the Montreal Protocol prohibited the worldwide use and production of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) and hydro fluorocarbons (HFCs) were proposed as alternative refrigerants. Unfortunately, HFCs have non negligible global warning potential and therefore new refrigerants must be proposed or old refrigerants must be used associated with HFC. Accurate experimental thermodynamic data and predictive techniques are required for better under-standing of the performance of the newly proposed refrigerants. In this communication, experimental techniques based on either analytic or synthetic methods are first described. Data are reported. Then two newly developed predictive models based on thermodynamic approach with the isofugacity criterion and artificial neural network method are presented. The results can provide better evaluation of refrigerants, especially with the aim of studying global warning effects.
基金supported by the University Grants Commission (UGC – BSR)
文摘A four-parameter, Ghoderao–Dalvi–Narayan 2 cubic equation of state(GDN2 CEOS), is presented which incorporates the following: 1. The experimental value of the critical compressibility factor has been used as a fixed input parameter for calculations;2. All the parameters(a, b, c, d) of CEOS are temperature dependent functions in the subcritical region and are temperature independent functions in the supercritical region and;3. A new α function is introduced with two compound specific parameters which are estimated by matching saturated vapor pressure at two fixed temperature points Tr= 0.5, 0.7. Our formalism enables us to cast three of the four parameters of the CEOS as a function of the remaining parameter. The proposed CEOS is used to predict properties of 334 pure compounds, including saturated vapor pressure and liquid density, compressed liquid density, heat capacities at the constant pressure and volume, enthalpy of vaporization, sound velocity. To calculate thermodynamic properties of a pure compound, the present CEOS require the critical temperature, the critical pressure, the Pitzer’s acentric factor, the critical compressibility factor, and two parameters of the alpha function. The saturated liquid density predictions for pure fluids are very accurate when compared with GDN1(Ghoderao–Dalvi–Narayan 1),MPR(Modified Peng–Robinson), and PT(Patel–Teja) equations of state. Unlike MPR EOS, the proposed temperature dependent covolume parameter b in the present work satisfies all the constraints mentioned in the literature to avoid thermodynamic inconsistencies at the extreme temperature and pressure. Using van der Waals one-fluid mixing rule, the present CEOS is further used to predict bubble pressure and the vapor mole fraction of binary mixtures.