Position controlled nanowire growth is important for nanowire-based optoelectronic components which rely on light emission or light absorption. For solar energy harvesting applications, dense arrays of nanowires are n...Position controlled nanowire growth is important for nanowire-based optoelectronic components which rely on light emission or light absorption. For solar energy harvesting applications, dense arrays of nanowires are needed; however, a major obstacle to obtaining dense nanowire arrays is seed particle displacement and coalescing during the annealing stage prior to nanowire growth. Here, we explore three different strategies to improve pattern preservation of large-area catalyst particle arrays defined by nanoimprint lithography for nanowire growth. First, we see that heat treating the growth substrate prior to nanoimprint lithography improves pattern preservation. Second, we explore the possibility of improving pattern preservation by fixing the seed particles in place prior to annealing by modifying the growth procedure. And third, we show that a SiNx growth mask can fully prevent seed particle displacement. We show how these strategies allow us to greatly improve the pattern fidelity of grown InP nanowire arrays with dimensions suitable for solar cell applications, ultimately achieving 100% pattern preservation over the sampled area. The generic nature of these strategies is supported through the synthesis of GaAs and GaP nanowires.展开更多
The effect of a high temperature AlN buffer layer grown by the initially alternating supply of ammonia (IASA) method on AlGaN/GaN heterostructures was studied. The use of AlN by the IASA method can effectively incre...The effect of a high temperature AlN buffer layer grown by the initially alternating supply of ammonia (IASA) method on AlGaN/GaN heterostructures was studied. The use of AlN by the IASA method can effectively increase the crystalline quality and surface morphology of GaN. The mobility and concentration of 2DEG of AlGaN/GaN heterostuctures was also ameliorated.展开更多
文摘Position controlled nanowire growth is important for nanowire-based optoelectronic components which rely on light emission or light absorption. For solar energy harvesting applications, dense arrays of nanowires are needed; however, a major obstacle to obtaining dense nanowire arrays is seed particle displacement and coalescing during the annealing stage prior to nanowire growth. Here, we explore three different strategies to improve pattern preservation of large-area catalyst particle arrays defined by nanoimprint lithography for nanowire growth. First, we see that heat treating the growth substrate prior to nanoimprint lithography improves pattern preservation. Second, we explore the possibility of improving pattern preservation by fixing the seed particles in place prior to annealing by modifying the growth procedure. And third, we show that a SiNx growth mask can fully prevent seed particle displacement. We show how these strategies allow us to greatly improve the pattern fidelity of grown InP nanowire arrays with dimensions suitable for solar cell applications, ultimately achieving 100% pattern preservation over the sampled area. The generic nature of these strategies is supported through the synthesis of GaAs and GaP nanowires.
基金Project supported by the Key Program of the National Natural Science Foundation of China(No.60736033)the National Key S&T Special Project(No.2008ZX0101002-003)the National Defense Scientific and Technical Pre-Research Program of China(Nos. 51311050112,51308030102,51308040301)
文摘The effect of a high temperature AlN buffer layer grown by the initially alternating supply of ammonia (IASA) method on AlGaN/GaN heterostructures was studied. The use of AlN by the IASA method can effectively increase the crystalline quality and surface morphology of GaN. The mobility and concentration of 2DEG of AlGaN/GaN heterostuctures was also ameliorated.