By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of ...By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.展开更多
This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational funct...This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.展开更多
Based on the closed connections among the homogeneous balance (HB) method and Clarkson-KruSkal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meant...Based on the closed connections among the homogeneous balance (HB) method and Clarkson-KruSkal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meantime it is shown that this leads to a direct reduction in the form of ordinary differential equation under some integrability conditions between the variable coefficients. Two different cases have been discussed, the search for solutions of those ordinary differential equations yielded many exact travelling and solitonic wave solutions in the form of hyperbolic and trigonometric functions under some constraints between the variable coefficients.展开更多
By means of sn-function expansion method and cn-function expansion method, several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained, which include three sets of periodic...By means of sn-function expansion method and cn-function expansion method, several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained, which include three sets of periodic wave-like solutions. These solutions degenerate to solitary wave-like solutions at a certain limit. Some new solutions are presented.展开更多
By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and non...By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given.展开更多
By bilinear approach we derive N-soliton-like solutions for a variable coefficient KdV equation with some x-dependent coefficients. This equation can be considered as a non-isospectral variable coefficient KdV equatio...By bilinear approach we derive N-soliton-like solutions for a variable coefficient KdV equation with some x-dependent coefficients. This equation can be considered as a non-isospectral variable coefficient KdV equation. Solutions in Hirota’s form and Wronskian form are given, respectively.展开更多
This paper mainly introduces the parallel physics-informed neural networks(PPINNs)method with regularization strategies to solve the data-driven forward-inverse problems of the variable coefficient modified Korteweg-d...This paper mainly introduces the parallel physics-informed neural networks(PPINNs)method with regularization strategies to solve the data-driven forward-inverse problems of the variable coefficient modified Korteweg-de Vries(VC-MKdV)equation.For the forward problem of the VC-MKdV equation,the authors use the traditional PINN method to obtain satisfactory data-driven soliton solutions and provide a detailed analysis of the impact of network width and depth on solving accuracy and speed.Furthermore,the author finds that the traditional PINN method outperforms the one with locally adaptive activation functions in solving the data-driven forward problems of the VC-MKdV equation.As for the data-driven inverse problem of the VC-MKdV equation,the author introduces a parallel neural networks to separately train the solution function and coefficient function,successfully addressing the function discovery problem of the VC-MKdV equation.To further enhance the network’s generalization ability and noise robustness,the author incorporates two regularization strategies into the PPINNs.An amount of numerical experimental data in this paper demonstrates that the PPINNs method can effectively address the function discovery problem of the VC-MKdV equation,and the inclusion of appropriate regularization strategies in the PPINNs can improves its performance.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No 10461006), the High Education Science Research Program(Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University(Grant No QN005023).
文摘By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010B17914) and the National Natural Science Foundation of China (Grant No. 10926162).
文摘This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.
文摘Based on the closed connections among the homogeneous balance (HB) method and Clarkson-KruSkal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meantime it is shown that this leads to a direct reduction in the form of ordinary differential equation under some integrability conditions between the variable coefficients. Two different cases have been discussed, the search for solutions of those ordinary differential equations yielded many exact travelling and solitonic wave solutions in the form of hyperbolic and trigonometric functions under some constraints between the variable coefficients.
文摘By means of sn-function expansion method and cn-function expansion method, several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained, which include three sets of periodic wave-like solutions. These solutions degenerate to solitary wave-like solutions at a certain limit. Some new solutions are presented.
基金Supported by the Develop Programme Foundation of the National Basic research(G1 9990 3 2 80 1 )
文摘By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10371070, 10671121)the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘By bilinear approach we derive N-soliton-like solutions for a variable coefficient KdV equation with some x-dependent coefficients. This equation can be considered as a non-isospectral variable coefficient KdV equation. Solutions in Hirota’s form and Wronskian form are given, respectively.
文摘This paper mainly introduces the parallel physics-informed neural networks(PPINNs)method with regularization strategies to solve the data-driven forward-inverse problems of the variable coefficient modified Korteweg-de Vries(VC-MKdV)equation.For the forward problem of the VC-MKdV equation,the authors use the traditional PINN method to obtain satisfactory data-driven soliton solutions and provide a detailed analysis of the impact of network width and depth on solving accuracy and speed.Furthermore,the author finds that the traditional PINN method outperforms the one with locally adaptive activation functions in solving the data-driven forward problems of the VC-MKdV equation.As for the data-driven inverse problem of the VC-MKdV equation,the author introduces a parallel neural networks to separately train the solution function and coefficient function,successfully addressing the function discovery problem of the VC-MKdV equation.To further enhance the network’s generalization ability and noise robustness,the author incorporates two regularization strategies into the PPINNs.An amount of numerical experimental data in this paper demonstrates that the PPINNs method can effectively address the function discovery problem of the VC-MKdV equation,and the inclusion of appropriate regularization strategies in the PPINNs can improves its performance.