期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
The Jacobi elliptic function-like exact solutions to two kinds of KdV equations with variable coefficients and KdV equation with forcible term 被引量:10
1
作者 套格图桑 斯仁到尔吉 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第12期2809-2818,共10页
By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of ... By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed. 展开更多
关键词 auxiliary equation kdv equation with variable coefficients kdv equation with a forcible term Jacobi elliptic function-like exact solutions
下载PDF
The extended auxiliary the KdV equation with equation method for variable coefficients 被引量:8
2
作者 Shi Lan-Fang Chen Cai-Sheng Zhou Xian-Chun 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期166-170,共5页
This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational funct... This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics. 展开更多
关键词 extended auxiliary equation method kdv equation with variable coefficients exactsolutions
下载PDF
Direct Reduction and Exact Solutions for Generalized Variable Coefficients 2D KdV Equation under Some Integrability Conditions 被引量:2
3
作者 M.H.M.Moussa RehabM.El-Shiekh 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第4期551-554,共4页
Based on the closed connections among the homogeneous balance (HB) method and Clarkson-KruSkal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meant... Based on the closed connections among the homogeneous balance (HB) method and Clarkson-KruSkal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meantime it is shown that this leads to a direct reduction in the form of ordinary differential equation under some integrability conditions between the variable coefficients. Two different cases have been discussed, the search for solutions of those ordinary differential equations yielded many exact travelling and solitonic wave solutions in the form of hyperbolic and trigonometric functions under some constraints between the variable coefficients. 展开更多
关键词 direct reduction method the generalized variable coefficients 2D kdv equation exact solutions
下载PDF
EXPLICIT SOLUTIONS TO THE COUPLED KdV EQUATIONS WITH VARIABLE COEFFICIENTS 被引量:1
4
作者 徐桂琼 李志斌 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第1期101-107,共7页
By means of sn-function expansion method and cn-function expansion method, several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained, which include three sets of periodic... By means of sn-function expansion method and cn-function expansion method, several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained, which include three sets of periodic wave-like solutions. These solutions degenerate to solitary wave-like solutions at a certain limit. Some new solutions are presented. 展开更多
关键词 cn-function method sn-function method periodic wave-like solution solitary wave-like solution coupled kdv equations with variable coefficient
下载PDF
EXACT SOLUTIONS FOR GENERAL VARIABLE-COEFFICIENT KdV EQUATION 被引量:8
5
作者 Liu Xiqiang Jiang SongGraduate School, China Academy of Engineering and Physics, P.O. Box 2101, Beijing 100088 Dept. of Math., Liaocheng Teachers Univ., Shandong 252000. Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beiji 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2001年第4期377-380,共4页
By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and non... By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given. 展开更多
关键词 General variable coefficient kdv equation nonclassical method of symmetry reduction exact solution.
下载PDF
Solutions for non-isospectral variable coefficient KdV equation
6
作者 朱晓英 张大军 陈登远 《Journal of Shanghai University(English Edition)》 CAS 2010年第6期410-414,共5页
By bilinear approach we derive N-soliton-like solutions for a variable coefficient KdV equation with some x-dependent coefficients. This equation can be considered as a non-isospectral variable coefficient KdV equatio... By bilinear approach we derive N-soliton-like solutions for a variable coefficient KdV equation with some x-dependent coefficients. This equation can be considered as a non-isospectral variable coefficient KdV equation. Solutions in Hirota’s form and Wronskian form are given, respectively. 展开更多
关键词 non-isospectral variable coefficient kdv equation Hirota method Wronskian technique
下载PDF
Parallel Physics-Informed Neural Networks Method with Regularization Strategies for the Forward-Inverse Problems of the Variable Coefficient Modified KdV Equation 被引量:1
7
作者 ZHOU Huijuan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第2期511-544,共34页
This paper mainly introduces the parallel physics-informed neural networks(PPINNs)method with regularization strategies to solve the data-driven forward-inverse problems of the variable coefficient modified Korteweg-d... This paper mainly introduces the parallel physics-informed neural networks(PPINNs)method with regularization strategies to solve the data-driven forward-inverse problems of the variable coefficient modified Korteweg-de Vries(VC-MKdV)equation.For the forward problem of the VC-MKdV equation,the authors use the traditional PINN method to obtain satisfactory data-driven soliton solutions and provide a detailed analysis of the impact of network width and depth on solving accuracy and speed.Furthermore,the author finds that the traditional PINN method outperforms the one with locally adaptive activation functions in solving the data-driven forward problems of the VC-MKdV equation.As for the data-driven inverse problem of the VC-MKdV equation,the author introduces a parallel neural networks to separately train the solution function and coefficient function,successfully addressing the function discovery problem of the VC-MKdV equation.To further enhance the network’s generalization ability and noise robustness,the author incorporates two regularization strategies into the PPINNs.An amount of numerical experimental data in this paper demonstrates that the PPINNs method can effectively address the function discovery problem of the VC-MKdV equation,and the inclusion of appropriate regularization strategies in the PPINNs can improves its performance. 展开更多
关键词 Data-driven forward-inverse problems parallel physics-informed neural networks regularization strategies variable coefficient modified kdv equation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部