By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of ...By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.展开更多
This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational funct...This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.展开更多
Based on the closed connections among the homogeneous balance (HB) method and Clarkson-KruSkal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meant...Based on the closed connections among the homogeneous balance (HB) method and Clarkson-KruSkal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meantime it is shown that this leads to a direct reduction in the form of ordinary differential equation under some integrability conditions between the variable coefficients. Two different cases have been discussed, the search for solutions of those ordinary differential equations yielded many exact travelling and solitonic wave solutions in the form of hyperbolic and trigonometric functions under some constraints between the variable coefficients.展开更多
By means of sn-function expansion method and cn-function expansion method, several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained, which include three sets of periodic...By means of sn-function expansion method and cn-function expansion method, several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained, which include three sets of periodic wave-like solutions. These solutions degenerate to solitary wave-like solutions at a certain limit. Some new solutions are presented.展开更多
By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and non...By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given.展开更多
Using the solution of general Korteweg-de Vries (KdV) equation, the solutions of the generalized variable coefficient Kadomtsev-Petviashvili (KP) equation are constructed, and then its new solitary wave-like solut...Using the solution of general Korteweg-de Vries (KdV) equation, the solutions of the generalized variable coefficient Kadomtsev-Petviashvili (KP) equation are constructed, and then its new solitary wave-like solution and Jacobi elliptic function solution are obtained.展开更多
The determinant representation of three-fold Darboux transformation for a variable-coefficient modified KdV equation is displayed based on the technique used to solve Ablowitz-Kaup-Newell-Segur system. Additionally, t...The determinant representation of three-fold Darboux transformation for a variable-coefficient modified KdV equation is displayed based on the technique used to solve Ablowitz-Kaup-Newell-Segur system. Additionally, the nonsingular positon solutions of the variable-coefficient modified KdV equation are firstly discovered analytically and graphically.展开更多
On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion tha...On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion that the evolution of the amplitude satisfies the variable coefficient Korteweg-de Vries(KdV) equation.展开更多
By bilinear approach we derive N-soliton-like solutions for a variable coefficient KdV equation with some x-dependent coefficients. This equation can be considered as a non-isospectral variable coefficient KdV equatio...By bilinear approach we derive N-soliton-like solutions for a variable coefficient KdV equation with some x-dependent coefficients. This equation can be considered as a non-isospectral variable coefficient KdV equation. Solutions in Hirota’s form and Wronskian form are given, respectively.展开更多
The prolongation structure methodologies of Wahlquist-Estabrook [Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1] for nonlinear differential equations are applied to a variable-coefficient KdV equation. Based...The prolongation structure methodologies of Wahlquist-Estabrook [Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1] for nonlinear differential equations are applied to a variable-coefficient KdV equation. Based on the obtained prolongation structure, a Lie algebra with five parameters is constructed. Under certain conditions, a Lie algebra representation and three kinds of Lax pairs for the variable coefficient KdV equation are derived.展开更多
This paper mainly introduces the parallel physics-informed neural networks(PPINNs)method with regularization strategies to solve the data-driven forward-inverse problems of the variable coefficient modified Korteweg-d...This paper mainly introduces the parallel physics-informed neural networks(PPINNs)method with regularization strategies to solve the data-driven forward-inverse problems of the variable coefficient modified Korteweg-de Vries(VC-MKdV)equation.For the forward problem of the VC-MKdV equation,the authors use the traditional PINN method to obtain satisfactory data-driven soliton solutions and provide a detailed analysis of the impact of network width and depth on solving accuracy and speed.Furthermore,the author finds that the traditional PINN method outperforms the one with locally adaptive activation functions in solving the data-driven forward problems of the VC-MKdV equation.As for the data-driven inverse problem of the VC-MKdV equation,the author introduces a parallel neural networks to separately train the solution function and coefficient function,successfully addressing the function discovery problem of the VC-MKdV equation.To further enhance the network’s generalization ability and noise robustness,the author incorporates two regularization strategies into the PPINNs.An amount of numerical experimental data in this paper demonstrates that the PPINNs method can effectively address the function discovery problem of the VC-MKdV equation,and the inclusion of appropriate regularization strategies in the PPINNs can improves its performance.展开更多
The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be construc...The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be constructed by the solutions of original models if their solutions are well known, such as the standard constant coefficient KdV equation and the standard compound KdV--Burgers equation, and so on. Then any one of these variable-coefficient equations can be considered as an original model to obtain new variable-coefficient equations whose solutions can also be known by means of transformation relations between solutions of the resulting new variable-coefficient equations and the original equation.展开更多
In this paper, we establish an estimate for the solutions of small-divisor equation of higher order with large variable coefficient. Then by formulating an infinite-dimensional KAM theorem which allows for multiple no...In this paper, we establish an estimate for the solutions of small-divisor equation of higher order with large variable coefficient. Then by formulating an infinite-dimensional KAM theorem which allows for multiple normal frequencies and unbounded perturbations, we prove that there are many periodic solutions for the coupled KdV equation subject to small Hamiltonian perturbations.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No 10461006), the High Education Science Research Program(Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University(Grant No QN005023).
文摘By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010B17914) and the National Natural Science Foundation of China (Grant No. 10926162).
文摘This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.
文摘Based on the closed connections among the homogeneous balance (HB) method and Clarkson-KruSkal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meantime it is shown that this leads to a direct reduction in the form of ordinary differential equation under some integrability conditions between the variable coefficients. Two different cases have been discussed, the search for solutions of those ordinary differential equations yielded many exact travelling and solitonic wave solutions in the form of hyperbolic and trigonometric functions under some constraints between the variable coefficients.
文摘By means of sn-function expansion method and cn-function expansion method, several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained, which include three sets of periodic wave-like solutions. These solutions degenerate to solitary wave-like solutions at a certain limit. Some new solutions are presented.
基金Supported by the Develop Programme Foundation of the National Basic research(G1 9990 3 2 80 1 )
文摘By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given.
文摘Using the solution of general Korteweg-de Vries (KdV) equation, the solutions of the generalized variable coefficient Kadomtsev-Petviashvili (KP) equation are constructed, and then its new solitary wave-like solution and Jacobi elliptic function solution are obtained.
文摘The determinant representation of three-fold Darboux transformation for a variable-coefficient modified KdV equation is displayed based on the technique used to solve Ablowitz-Kaup-Newell-Segur system. Additionally, the nonsingular positon solutions of the variable-coefficient modified KdV equation are firstly discovered analytically and graphically.
基金supported by the Meteorological Special Project of China(GYHY200806005)the National Natural Sciences Foundation of China(40805028,40675039,40575036)the Key Technologies R&D Program of China(2009BAC51B04)
文摘On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion that the evolution of the amplitude satisfies the variable coefficient Korteweg-de Vries(KdV) equation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10371070, 10671121)the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘By bilinear approach we derive N-soliton-like solutions for a variable coefficient KdV equation with some x-dependent coefficients. This equation can be considered as a non-isospectral variable coefficient KdV equation. Solutions in Hirota’s form and Wronskian form are given, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10735030and90718041)the Shanghai Leading Academic Discipline Project,China(Grant No.B412)+1 种基金the Program for Changjiang Scholars,the Innovative Research Team in University,Ministry of Education of China(Grant No.IRT0734)the K.C.Wong Magna Fund in Ningbo University,China
文摘The prolongation structure methodologies of Wahlquist-Estabrook [Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1] for nonlinear differential equations are applied to a variable-coefficient KdV equation. Based on the obtained prolongation structure, a Lie algebra with five parameters is constructed. Under certain conditions, a Lie algebra representation and three kinds of Lax pairs for the variable coefficient KdV equation are derived.
文摘This paper mainly introduces the parallel physics-informed neural networks(PPINNs)method with regularization strategies to solve the data-driven forward-inverse problems of the variable coefficient modified Korteweg-de Vries(VC-MKdV)equation.For the forward problem of the VC-MKdV equation,the authors use the traditional PINN method to obtain satisfactory data-driven soliton solutions and provide a detailed analysis of the impact of network width and depth on solving accuracy and speed.Furthermore,the author finds that the traditional PINN method outperforms the one with locally adaptive activation functions in solving the data-driven forward problems of the VC-MKdV equation.As for the data-driven inverse problem of the VC-MKdV equation,the author introduces a parallel neural networks to separately train the solution function and coefficient function,successfully addressing the function discovery problem of the VC-MKdV equation.To further enhance the network’s generalization ability and noise robustness,the author incorporates two regularization strategies into the PPINNs.An amount of numerical experimental data in this paper demonstrates that the PPINNs method can effectively address the function discovery problem of the VC-MKdV equation,and the inclusion of appropriate regularization strategies in the PPINNs can improves its performance.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10675065)the Scientific Research Fundof the Education Department of Zhejiang Province of China (Grant No. 20070979)
文摘The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be constructed by the solutions of original models if their solutions are well known, such as the standard constant coefficient KdV equation and the standard compound KdV--Burgers equation, and so on. Then any one of these variable-coefficient equations can be considered as an original model to obtain new variable-coefficient equations whose solutions can also be known by means of transformation relations between solutions of the resulting new variable-coefficient equations and the original equation.
基金Supported by National Natural Science Foundation of China (Grant No. 10725103), 973 Program (Grant No 2010CB327900) and Research Foundation for Doctor Programme (Grant No. 20080246) The authors are indebted to X. Yuan for his helpful discussion and encouragements, and to the two reviewers for invaluable suggestions.
文摘In this paper, we establish an estimate for the solutions of small-divisor equation of higher order with large variable coefficient. Then by formulating an infinite-dimensional KAM theorem which allows for multiple normal frequencies and unbounded perturbations, we prove that there are many periodic solutions for the coupled KdV equation subject to small Hamiltonian perturbations.