期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Feature Extraction Method Based on Pseudo-Wigner-Ville Distribution for Rotational Machinery in Variable Operating Conditions 被引量:9
1
作者 WANG Huaqing LIKe +1 位作者 SUN Hao CHEN Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期661-668,共8页
In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption... In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption that machinery operates under a constant rotational speed. However, when the rotational speed varies in the broader range, the pass-frequencies vary with the change of rotational speed and bearing faults cannot be identified by the interval of impacts. Researches related to automatic diagnosis for rotational machinery in variable operating conditions were quite few. A novel automatic feature extraction method is proposed based on a pseudo-Wigner-Ville distribution (PWVD) and an extraction of symptom parameter (SP). An extraction method for instantaneous feature spectrum is presented using the relative crossing information (RCI) and sequential inference approach, by which the feature spectrum from time-frequency distribution can be automatically, sequentially extracted. The SPs are considered in the frequency domain using the extracted feature spectrum to identify among the conditions of a machine. A method to obtain the synthetic symptom parameter is also proposed by the least squares mapping (LSM) technique for increasing the diagnosis sensitivity of SP. Practical examples of diagnosis for bearings are given in order to verify the effectiveness of the proposed method. The verification results show that the features of bearing faults, such as the outer-race, inner-race and roller element defects have been effectively extracted, and the proposed method can be used for condition diagnosis of a machine under the variable rotational speed. 展开更多
关键词 feature extraction pseudo-wigner-ville distribution variable operating condition sequential diagnosis
下载PDF
Component modeling and updating method of integrated energy systems based on knowledge distillation
2
作者 Xueru Lin Wei Zhong +4 位作者 Xiaojie Lin Yi Zhou Long Jiang Liuliu Du-Ikonen Long Huang 《Energy and AI》 EI 2024年第2期184-199,共16页
Amid the backdrop of carbon neutrality, traditional energy production is transitioning towards integrated energy systems (IES), where model-based scheduling is key in scenarios with multiple uncertainties on both supp... Amid the backdrop of carbon neutrality, traditional energy production is transitioning towards integrated energy systems (IES), where model-based scheduling is key in scenarios with multiple uncertainties on both supply and demand sides. The development of artificial intelligence algorithms, has resolved issues related to model accuracy. However, under conditions of high proportion renewable energy integration, component load adjustments require increased flexibility, so the mathematical model of the component must adapt to constantly changing operating conditions. Therefore, the identification of operating condition changes and rapid model updating are pressing issues. This study proposes a modeling and updating method for IES components based on knowledge distillation. The core of this modeling method is the light weighting of the model, which is achieved through a knowledge distillation method, using a teacher-student mode to compress complex neural network models. The triggering of model updates is achieved through principal component analysis. The study also analyzes the impact of model errors caused by delayed model updates on the overall scheduling of IES. Case studies are conducted on critical components in IES, including coal-fired boilers and turbines. The results show that the time consumption for model updating is reduced by 76.67 % using the proposed method. Under changing conditions, compared with two traditional models, the average deviation of this method is reduced by 12.61 % and 3.49 %, respectively, thereby improving the model's adaptability. The necessity of updating the component model is further analyzed, as a 1.00 % mean squared error in the component model may lead to a power deviation of 0.075 MW. This method provides real-time, adaptable support for IES data modeling and updates. 展开更多
关键词 Component modeling Adaptive update Knowledge distillation variable operating conditions Integrated energy system DATA-DRIVEN
原文传递
Application of Transfer Learningin Mechanical Equipment Intelligent Diagnosis:Literature Review
3
作者 LIU Tao WANG Zhenya +1 位作者 WU Xing LI Menghang 《昆明理工大学学报(自然科学版)》 北大核心 2024年第4期154-169,共16页
Accelerating the process of intelligent manufacturing and the demand for new industrial productivity,the operating conditions of machinery and equipment have become ever more severe.As an important link to ensure the ... Accelerating the process of intelligent manufacturing and the demand for new industrial productivity,the operating conditions of machinery and equipment have become ever more severe.As an important link to ensure the stable operation of the production process,the condition monitoring and fault diagnosis of equipment have become equally important.The fault diagnosis of equipment in actual production is often challenged by variable working conditions,large differences in data distribution,and lack of labeled samples,etc.Traditional fault diagnosis methods are often difficult to achieve ideal results in these complex environments.Transfer learning(TL)as an emerging technology can effectively utilize existing knowledge and data to improve the diagnostic performance.Firstly,this paper analyzes the trend of mechanical equipment fault diagnosis and explains the basic concept of TL.Then TL based on parameters,TL based on features,TL based on instances and domain adaptive(DA)methods are summarized and analyzed in terms of existing TL methods.Finally,the problems faced in the current TL research are summarized and the future development trend is pointed out.This review aims to help researchers in related fields understand the latest progress of TL and promote the application and development of TL in mechanical equipment diagnosis. 展开更多
关键词 mechanical equipment transfer learning variable operating conditions fault diagnosis sample distribution differences
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部