This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the ...This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities.展开更多
As a type of reciprocating machine, the reciprocating compressor has a compact structure and many excitation sources.Once the small end bearing of the connecting rod is worn, it is easy to cause the sintering of the b...As a type of reciprocating machine, the reciprocating compressor has a compact structure and many excitation sources.Once the small end bearing of the connecting rod is worn, it is easy to cause the sintering of the bearing and the abnormal vibration of the body.Based on the characteristics of poor lubrication state and complex force of connecting rod small head bearing, a mixed lubrication model considering oil groove feed was established, and the dynamic simulation of the reciprocating compressor model with lubricated bearings was carried out;considering different speeds and gas load conditions, the law of the impact of the eigenvalues changing with working conditions was explored.The fault simulation experiment was carried out by selecting representative working conditions, which verified the correctness of the simulation method.The study found that two contact collisions between the pin and the bearing bush occurred in one cycle, the collision impact was more severe under the wear fault, and the existence of the gap made the dynamic response more sensitive to the change of working conditions.This research provides ideas for the location and feature extraction of fault symptom signal angular segments in the process of complex measured signal processing.展开更多
Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following ...Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a ...Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.展开更多
Long period variable(LPV)stars are very promising distance indicators in the infrared bands.We selected asymptotic giant branch(AGB)stars in the Large and Small Magellanic Cloud(LMC and SMC)from the Gaia Data Release ...Long period variable(LPV)stars are very promising distance indicators in the infrared bands.We selected asymptotic giant branch(AGB)stars in the Large and Small Magellanic Cloud(LMC and SMC)from the Gaia Data Release 3 LPV catalog,and classified them into oxygen-rich(O-rich)and carbon-rich(C-rich)AGB stars.Using the Wide-field Infrared Survey Explorer database,we determined the W1-and W2-band period-luminosity relations(PLRs)for each pulsation-mode sequence of AGB stars.The dispersion of the PLRs of O-rich AGB stars in sequences C'and C is relatively small,around 0.14 mag.The PLRs of LMC and SMC are consistent in each sequence.In the W2 band,the PLR of large-amplitude C-rich AGB stars is steeper than that of small-amplitude C-rich AGB stars,due to their more circumstellar dust.By two methods,we find that some PLR sequences of O-rich AGB stars in the LMC are dependent on metallicity.The coefficients of the metallicity effect areβ=-0.533±0.213 mag dex~1andβ=-0.767±0.158 mag dex~1for sequence C in W1 and W2 bands,respectively.The significance of the metallicity effect in W1 band for the four sequences is 2.2-3.5σ.Both of these imply that distance measurements using O-rich Mira may need to take the metallicity effect into account.展开更多
In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fracti...In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.展开更多
In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate pro...In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate production evaluations because of the absence of matrix-macrofracture communication.In addition,most of the existing models are solved analytically based on Laplace transform and numerical inversion.Hence,an approximate analytical solution is derived directly in real-time space considering variable matrix blocks and simultaneous matrix depletion.To simplify the derivation,the simultaneous matrix depletion is divided into two parts:one part feeding the macrofractures and the other part feeding the microfractures.Then,a series of partial differential equations(PDEs)describing the transient flow and boundary conditions are constructed and solved analytically by integration.Finally,a relationship between oil rate and production time in real-time space is obtained.The new model is verified against classical analytical models.When the microfracture system and matrix-macrofracture communication is neglected,the result of the new model agrees with those obtained with the dual-porosity and triple-porosity model,respectively.Certainly,the new model also has an excellent agreement with the numerical model.The model is then applied to two actual tight oil wells completed in western Canada sedimentary basin.After identifying the flow regime,the solution suitably matches the field production data,and the model parameters are determined.Through these output parameters,we can accurately forecast the production and even estimate the petrophysical properties.展开更多
Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the conditio...Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the condition of variable link distance.This variable link is accomplished by the relative motion of a single telescope fixed on the experimental platform to a corner-cube reflector(CCR)installed on a sliding guide.Two acousto–optic modulators with different frequencies are used to separate forward signal from backward signal.With active phase noise suppression,when the CCR moves back and forth at a constant velocity of 20 cm/s and an acceleration of 20 cm/s^(2),we achieve the best frequency stability of 1.9×10^(-16) at 1 s and 7.9×10^(-19) at 1000 s indoors.This work paves the way for future studying optical frequency transfer between ultra-high-orbit satellites.展开更多
Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into...Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into photosynthesis. It is very sensible for factors affecting on vegetation variability such as climate, soils, plant characteristics and human activities. So, it can be used as an indicator of actual and potential trend of vegetation. In this study we used the actual NPP which was derived from MODIS to assess the response of NPP to climate variables in Gadarif State, from 2000 to 2010. The correlations between NPP and climate variables (temperature and precipitation) are calculated using Pearson’s Correlation Coefficient and ordinary least squares regression. The main results show the following 1) the correlation Coefficient between NPP and mean annual temperature is Somewhat negative for Feshaga, Rahd, Gadarif and Galabat areas and weakly negative in Faw area;2) the correlation Coefficient between NPP and annual total precipitation is weakly negative in Faw, Rahd and Galabat areas and somewhat negative in Galabat and Rahd areas. This study demonstrated that the correlation analysis between NPP and climate variables (precipitation and temperature) gives reliably result of NPP responses to climate variables that is clearly in a very large scale of study area.展开更多
A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in ...A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in this paper is based on Prufer transformation,which is different from the classical ones.Moreover,we give two examples to verify our main results.展开更多
Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian...Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.展开更多
In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propos...In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme(MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol.We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.展开更多
Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optim...Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optimization of CCWS often prioritizes short-term flow velocity optimization for minimizing power consumption,without considering fouling.However,low flow velocity promotes fouling.Therefore,it's crucial to balance fouling and energy/water conservation for optimal CCWS long-term operation.This study proposes a mixed-integer nonlinear programming(MINLP)model to achieve this goal.The model considers fouling in the pipeline,dynamic concentration cycle,and variable frequency drive to optimize the synergy between heat transfer,pressure drop,and fouling.By optimizing the concentration cycle of the CCWS,water conservation and fouling control can be achieved.The model can obtain the optimal operating parameters for different operation intervals,including the number of pumps,frequency,and valve local resistance coefficient.Sensitivity experiments on cycle and environmental temperature reveal that as the cycle increases,the marginal benefits of energy/water conservation decrease.In periods with minimal impact on fouling rate,energy/water conservation can be achieved by increasing the cycle while maintaining a low fouling rate.Overall,the proposed model has significant energy/water saving effects and can comprehensively optimize the CCWS through its incorporation of fouling and cycle optimization.展开更多
The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn...The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.展开更多
This study investigated the mechanical properties of beech(Fagus sylvatica L.)and fir(Abies alba)wood from Bosnia and Herzegovina under outdoor exposure.Samples were exposed for 3-month exposure to assess bending stre...This study investigated the mechanical properties of beech(Fagus sylvatica L.)and fir(Abies alba)wood from Bosnia and Herzegovina under outdoor exposure.Samples were exposed for 3-month exposure to assess bending strength,color changes,and surface quality.Results showed outdoor exposure negatively affected mechanical properties,particularly in samples with extended finger joints,causing significant surface cracks in uncoated samples.Beech wood exhibited notable color changes under exposure,with approximately 50%darkening without coating compared to 25%under covered conditions.Coated samples displayed minimal color changes,affirming the efficacy of surface treatment.Fir wood exhibited a roughness of 8.264μm,while beechwood average roughness increased from 6.767 to 13.916μm after exposure,with micro-pore development affecting water performance.Microscopic analysis identified prevalent fungal colonies,including Penicillium,Aureobasidium,Sclerophoma,and Chaetomium,underscoring their role in organic matter decomposition.This study highlights the importance of wood exposure and treatment selection for various applications.展开更多
This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula...This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.展开更多
Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that ...Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that agents cannot directly observe. However, most of the existing latent variable discovery methods lack a clear representation of latent variables and an effective evaluation of the influence of latent variables on the agent. In this paper, we propose a new MARL algorithm based on the soft actor-critic method for complex continuous control tasks with confounders. It is called the multi-agent soft actor-critic with latent variable(MASAC-LV) algorithm, which uses variational inference theory to infer the compact latent variables representation space from a large amount of offline experience.Besides, we derive the counterfactual policy whose input has no latent variables and quantify the difference between the actual policy and the counterfactual policy via a distance function. This quantified difference is considered an intrinsic motivation that gives additional rewards based on how much the latent variable affects each agent. The proposed algorithm is evaluated on two collaboration tasks with confounders, and the experimental results demonstrate the effectiveness of MASAC-LV compared to other baseline algorithms.展开更多
Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the a...Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the acoustic vortices(AVs)which are formed by side lobes. In the near field, particles can be trapped in the valley region between the two annuli of the pressure peak, and cannot be moved to the vortex center. In this paper, a trapping method based on a sector transducer array is proposed, which is characterized by the continuously variable topological charge(CVTC). This acoustic field can not only enlarge the range of particle trapping but also improve the aggregation degree of the trapped particles. In the experiments, polyethylene particles with a diameter of 0.2 mm are trapped into the multi-annular valleys by the AV with a fixed topological charge. Nevertheless, by applying the CVTC, particles outside the radius of the AV can cross the pressure peak successfully and move to the vortex center. Theoretical studies are also verified by the experimental particles trapping using the AV with the continuous variation of three topological charges, and suggest the potential application of large-scale particle trapping in biomedical engineering.展开更多
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud...The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.展开更多
基金supported by the Natural Science Foundation of Hebei Province,China (Grant No.A2021502004)the Fundamental Research Funds for the Central Universities (Grant No.2024MS126).
文摘This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities.
基金Supported by the National Natural Science Foundation of China (No.52101343)。
文摘As a type of reciprocating machine, the reciprocating compressor has a compact structure and many excitation sources.Once the small end bearing of the connecting rod is worn, it is easy to cause the sintering of the bearing and the abnormal vibration of the body.Based on the characteristics of poor lubrication state and complex force of connecting rod small head bearing, a mixed lubrication model considering oil groove feed was established, and the dynamic simulation of the reciprocating compressor model with lubricated bearings was carried out;considering different speeds and gas load conditions, the law of the impact of the eigenvalues changing with working conditions was explored.The fault simulation experiment was carried out by selecting representative working conditions, which verified the correctness of the simulation method.The study found that two contact collisions between the pin and the bearing bush occurred in one cycle, the collision impact was more severe under the wear fault, and the existence of the gap made the dynamic response more sensitive to the change of working conditions.This research provides ideas for the location and feature extraction of fault symptom signal angular segments in the process of complex measured signal processing.
基金suppoited by an Alexander Graliam Bell Canada Graduate Scholarship-Doctoralsupported by an Ontario Graduate Scholarshipsupported by the Canada Research Chairs programme。
文摘Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金This research was founded by the Funds for Creative Research Groups of National Natural Science Foundation of China(Grant No.51921006)the National Natural Science Foundations of China(Grant No.51978224)+2 种基金the National Major Scientific Research Instrument Development Program of China(Grant No.51827811)the National Natural Science Foundation of China,(Grant No.52008141)the Shenzhen Technology Innovation Program(Grant Nos.JCYJ20170811160003571,JCYJ20180508152238111 and JCYJ20200109112803851).
文摘Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.12173047,12322306,12003046,12233009,and 12133002)support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(no.2022055 and 2023065)support from the National Key Research and Development Program of China,grants 2022YFF0503404 and 2019YFA0405504。
文摘Long period variable(LPV)stars are very promising distance indicators in the infrared bands.We selected asymptotic giant branch(AGB)stars in the Large and Small Magellanic Cloud(LMC and SMC)from the Gaia Data Release 3 LPV catalog,and classified them into oxygen-rich(O-rich)and carbon-rich(C-rich)AGB stars.Using the Wide-field Infrared Survey Explorer database,we determined the W1-and W2-band period-luminosity relations(PLRs)for each pulsation-mode sequence of AGB stars.The dispersion of the PLRs of O-rich AGB stars in sequences C'and C is relatively small,around 0.14 mag.The PLRs of LMC and SMC are consistent in each sequence.In the W2 band,the PLR of large-amplitude C-rich AGB stars is steeper than that of small-amplitude C-rich AGB stars,due to their more circumstellar dust.By two methods,we find that some PLR sequences of O-rich AGB stars in the LMC are dependent on metallicity.The coefficients of the metallicity effect areβ=-0.533±0.213 mag dex~1andβ=-0.767±0.158 mag dex~1for sequence C in W1 and W2 bands,respectively.The significance of the metallicity effect in W1 band for the four sequences is 2.2-3.5σ.Both of these imply that distance measurements using O-rich Mira may need to take the metallicity effect into account.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071496,61901530,and 62061008)the Natural Science Foundation of Hunan Province of China(Grant No.2020JJ5767).
文摘In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.
基金This study was supported by Basic Research Project from Jiangmen Science and Technology Bureau(Grant No.2220002000356)China University of Petroleum(Beijing)(Grand No.2462023BJRC007)The Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110376).
文摘In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate production evaluations because of the absence of matrix-macrofracture communication.In addition,most of the existing models are solved analytically based on Laplace transform and numerical inversion.Hence,an approximate analytical solution is derived directly in real-time space considering variable matrix blocks and simultaneous matrix depletion.To simplify the derivation,the simultaneous matrix depletion is divided into two parts:one part feeding the macrofractures and the other part feeding the microfractures.Then,a series of partial differential equations(PDEs)describing the transient flow and boundary conditions are constructed and solved analytically by integration.Finally,a relationship between oil rate and production time in real-time space is obtained.The new model is verified against classical analytical models.When the microfracture system and matrix-macrofracture communication is neglected,the result of the new model agrees with those obtained with the dual-porosity and triple-porosity model,respectively.Certainly,the new model also has an excellent agreement with the numerical model.The model is then applied to two actual tight oil wells completed in western Canada sedimentary basin.After identifying the flow regime,the solution suitably matches the field production data,and the model parameters are determined.Through these output parameters,we can accurately forecast the production and even estimate the petrophysical properties.
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFB0408300)the National Natural Science Foundation of China(Grant No.62175246)+2 种基金the Natural Science Foundation of Shanghai,China(Grant No.22ZR1471100)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.YIPA2021244)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300701).
文摘Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the condition of variable link distance.This variable link is accomplished by the relative motion of a single telescope fixed on the experimental platform to a corner-cube reflector(CCR)installed on a sliding guide.Two acousto–optic modulators with different frequencies are used to separate forward signal from backward signal.With active phase noise suppression,when the CCR moves back and forth at a constant velocity of 20 cm/s and an acceleration of 20 cm/s^(2),we achieve the best frequency stability of 1.9×10^(-16) at 1 s and 7.9×10^(-19) at 1000 s indoors.This work paves the way for future studying optical frequency transfer between ultra-high-orbit satellites.
文摘Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into photosynthesis. It is very sensible for factors affecting on vegetation variability such as climate, soils, plant characteristics and human activities. So, it can be used as an indicator of actual and potential trend of vegetation. In this study we used the actual NPP which was derived from MODIS to assess the response of NPP to climate variables in Gadarif State, from 2000 to 2010. The correlations between NPP and climate variables (temperature and precipitation) are calculated using Pearson’s Correlation Coefficient and ordinary least squares regression. The main results show the following 1) the correlation Coefficient between NPP and mean annual temperature is Somewhat negative for Feshaga, Rahd, Gadarif and Galabat areas and weakly negative in Faw area;2) the correlation Coefficient between NPP and annual total precipitation is weakly negative in Faw, Rahd and Galabat areas and somewhat negative in Galabat and Rahd areas. This study demonstrated that the correlation analysis between NPP and climate variables (precipitation and temperature) gives reliably result of NPP responses to climate variables that is clearly in a very large scale of study area.
基金Supported by the Natural Science Foundation of Shandong Province(ZR2023MA023,ZR2021MA047)Guangdong Provincial Featured Innovation Projects of High School(2023KTSCX067).
文摘A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in this paper is based on Prufer transformation,which is different from the classical ones.Moreover,we give two examples to verify our main results.
文摘Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61971348 and 61201194)。
文摘In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme(MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol.We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.
基金Financial support from the National Natural Science Foundation of China (22022816 and 22078358)
文摘Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optimization of CCWS often prioritizes short-term flow velocity optimization for minimizing power consumption,without considering fouling.However,low flow velocity promotes fouling.Therefore,it's crucial to balance fouling and energy/water conservation for optimal CCWS long-term operation.This study proposes a mixed-integer nonlinear programming(MINLP)model to achieve this goal.The model considers fouling in the pipeline,dynamic concentration cycle,and variable frequency drive to optimize the synergy between heat transfer,pressure drop,and fouling.By optimizing the concentration cycle of the CCWS,water conservation and fouling control can be achieved.The model can obtain the optimal operating parameters for different operation intervals,including the number of pumps,frequency,and valve local resistance coefficient.Sensitivity experiments on cycle and environmental temperature reveal that as the cycle increases,the marginal benefits of energy/water conservation decrease.In periods with minimal impact on fouling rate,energy/water conservation can be achieved by increasing the cycle while maintaining a low fouling rate.Overall,the proposed model has significant energy/water saving effects and can comprehensively optimize the CCWS through its incorporation of fouling and cycle optimization.
文摘The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.
基金financial support of the Slovenian Research Agency(ARRS)within Research Program P4-0015(Wood and Lignocellulosic Composites)Ministry of Education,Science,Culture,and Sports of the Una-Sana Canton,Co-Financing of Scientific Research and Research and Development Projects of Special Interest to the Una-Sana Canton(03-02-2190-647/2023)Assessment of the Structural Integrity of Cultural Buildings in Bosnia and Herzegovina(Una-Sana Canton)Using Non-Destructive Testing Methods.
文摘This study investigated the mechanical properties of beech(Fagus sylvatica L.)and fir(Abies alba)wood from Bosnia and Herzegovina under outdoor exposure.Samples were exposed for 3-month exposure to assess bending strength,color changes,and surface quality.Results showed outdoor exposure negatively affected mechanical properties,particularly in samples with extended finger joints,causing significant surface cracks in uncoated samples.Beech wood exhibited notable color changes under exposure,with approximately 50%darkening without coating compared to 25%under covered conditions.Coated samples displayed minimal color changes,affirming the efficacy of surface treatment.Fir wood exhibited a roughness of 8.264μm,while beechwood average roughness increased from 6.767 to 13.916μm after exposure,with micro-pore development affecting water performance.Microscopic analysis identified prevalent fungal colonies,including Penicillium,Aureobasidium,Sclerophoma,and Chaetomium,underscoring their role in organic matter decomposition.This study highlights the importance of wood exposure and treatment selection for various applications.
基金supported by the Korea Meteorological Administration Research and Development Program “Developing Application Technology for Atmospheric Research Aircraft” (Grant No. KMA2018-00222)
文摘This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.
基金supported in part by the National Natural Science Foundation of China (62136008,62236002,61921004,62173251,62103104)the “Zhishan” Scholars Programs of Southeast Universitythe Fundamental Research Funds for the Central Universities (2242023K30034)。
文摘Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that agents cannot directly observe. However, most of the existing latent variable discovery methods lack a clear representation of latent variables and an effective evaluation of the influence of latent variables on the agent. In this paper, we propose a new MARL algorithm based on the soft actor-critic method for complex continuous control tasks with confounders. It is called the multi-agent soft actor-critic with latent variable(MASAC-LV) algorithm, which uses variational inference theory to infer the compact latent variables representation space from a large amount of offline experience.Besides, we derive the counterfactual policy whose input has no latent variables and quantify the difference between the actual policy and the counterfactual policy via a distance function. This quantified difference is considered an intrinsic motivation that gives additional rewards based on how much the latent variable affects each agent. The proposed algorithm is evaluated on two collaboration tasks with confounders, and the experimental results demonstrate the effectiveness of MASAC-LV compared to other baseline algorithms.
基金Project supported by the National Key R&D Program of China(Grant No.2023YFE0201900)。
文摘Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the acoustic vortices(AVs)which are formed by side lobes. In the near field, particles can be trapped in the valley region between the two annuli of the pressure peak, and cannot be moved to the vortex center. In this paper, a trapping method based on a sector transducer array is proposed, which is characterized by the continuously variable topological charge(CVTC). This acoustic field can not only enlarge the range of particle trapping but also improve the aggregation degree of the trapped particles. In the experiments, polyethylene particles with a diameter of 0.2 mm are trapped into the multi-annular valleys by the AV with a fixed topological charge. Nevertheless, by applying the CVTC, particles outside the radius of the AV can cross the pressure peak successfully and move to the vortex center. Theoretical studies are also verified by the experimental particles trapping using the AV with the continuous variation of three topological charges, and suggest the potential application of large-scale particle trapping in biomedical engineering.
基金funded by the National Natural Science Foundation of China(No.51806236,No.51806239)the Fundamental Research Funds for the Central Universities(No.2015XKMS059)+1 种基金Shaanxi Postdoctoral Fund Project(No.2018BSHEDZZ56)Foundation of Key Laboratory of Thermo-Fluid Science and Engineering(Xi'an Jiaotong University),Ministry of Education(No.KLTFSE2017KF01)。
文摘The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.