期刊文献+
共找到483篇文章
< 1 2 25 >
每页显示 20 50 100
Wave propagation of a functionally graded plate via integral variables with a hyperbolic arcsine function
1
作者 Mokhtar Ellali Mokhtar Bouazza Ashraf M.Zenkour 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期547-561,共15页
Several studies on functionally graded materials(FGMs)have been done by researchers,but few studies have dealt with the impact of the modification of the properties of materials with regard to the functional propagati... Several studies on functionally graded materials(FGMs)have been done by researchers,but few studies have dealt with the impact of the modification of the properties of materials with regard to the functional propagation of the waves in plates.This work aims to explore the effects of changing compositional characteristics and the volume fraction of the constituent of plate materials regarding the wave propagation response of thick plates of FGM.This model is based on a higher-order theory and a new displacement field with four unknowns that introduce indeterminate integral variables with a hyperbolic arcsine function.The FGM plate is assumed to consist of a mixture of metal and ceramic,and its properties change depending on the power functions of the thickness of the plate,such as linear,quadratic,cubic,and inverse quadratic.By utilizing Hamilton’s principle,general formulae of the wave propagation were obtained to establish wave modes and phase velocity curves of the wave propagation in a functionally graded plate,including the effects of changing compositional characteristics of materials. 展开更多
关键词 FGM plate effects of material properties wave propagation indeterminate integral variables inverse sinus hyperbolic function
下载PDF
Numerical Analysis of Flow-Induced Vibration and Noise Generation in a Variable Cross-Section Channel
2
作者 Youhao Wang Chuntian Zhe +6 位作者 Chang Guo Jinpeng Li Jinheng Li Shen Cheng Zitian Wu Suoying He Ming Gao 《Fluid Dynamics & Materials Processing》 EI 2023年第12期2965-2980,共16页
Flow channels with a variable cross-section are important components of piping system and are widely used in variousfields of engineering.Using afinite element method and modal analysis theory,flow-induced noise,mode ... Flow channels with a variable cross-section are important components of piping system and are widely used in variousfields of engineering.Using afinite element method and modal analysis theory,flow-induced noise,mode shapes,and structure-borne noise in such systems are investigated in this study.The results demonstrate that the maximum displacement and equivalent stress are located in the part with variable cross-sectional area.The aver-age excitation force on theflow channel wall increases with theflow velocity.The maximum excitation force occurs in the range of 0–20 Hz,and then it decreases gradually in the range of 20–1000 Hz.Additionally,as theflow velocity rises from 1 to 3 m/s,the overall sound pressure level associated with theflow-induced noise grows from 49.37 to 66.37 dB.Similarly,the overall sound pressure level associated with the structure-borne noise rises from 40.27 to 72.20 dB.When theflow velocity is increased,the increment of the structure-borne noise is higher than that of theflow-induced noise. 展开更多
关键词 variable cross-section flow channel noise modal analysis structure-borne noise
下载PDF
Natural vibration of cantilever porous twisted plate with variable thickness in different directions
3
作者 Y.X.Hao Y.Y.Liu +3 位作者 W.Zhang L.T.Liu K.C.Sun S.W.Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期200-216,共17页
In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are stu... In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are studied.It is assumed that the thickness of the plate changes along spanwise direction and chordwise direction,respectively,and it changes in both directions.The classical thin shell theory,the first and second fundamental forms of surface and von Karman geometric relationship are employed to derive the total potential energy and kinetic energy of the cantilever twisted plate,in which the centrifugal force potential due to high rotational speed is included.Then,according to the Rayleigh-Ritz procedure and applying the polynomial functions which satisfy the cantilever boundary conditions,the dynamic system expressed by equations of motion is reduced to an eigenvalue problem.By numerical simulation,the frequency curves and the mode shapes of the twisted plate can be obtained to reveal the internal connection between natural vibration and the parameters.A series of comparison studies are performed to verify the accuracy of the present formulation and calculations,in which compared data come from experimental,finite element method and theoretical calculation,respectively.The influence of pre-twist angle,three different forms of thickness taper ratio and rotational speed on natural vibration,mode exchange and frequency veering phenomenon of the system is discussed in detail.In addition,the approach proposed here can efficiently extract analytical expressions of mode functions for rotating variable thickness cantilever twisted plate structures. 展开更多
关键词 Porous cantilever twisted plate variable thickness Natural vibration Frequency veering Mode exchange
下载PDF
Analysis of the mass of behind-armor debris generated by RHA subjected to normal penetration of variable cross-section EFP 被引量:4
4
作者 Boyang Xing Dongjiang Zhang +7 位作者 Zhenyan Guo Yunhui Hou Rui Guo Rongzhong Liu Liang Chen Hao Zhou Yongliang Yang Jianhua Luo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第3期390-397,共8页
Analyzing the mass of behind-armor debris (BAD) generated by Rolled Homogeneous Armor (RHA) subjected to normal penetration of variable cross-section Explosively Formed Projectile (EFP) is the purpose of this paper. S... Analyzing the mass of behind-armor debris (BAD) generated by Rolled Homogeneous Armor (RHA) subjected to normal penetration of variable cross-section Explosively Formed Projectile (EFP) is the purpose of this paper. So theoretical analysis, numerical simulation and experimental data are combined to analyze the influence of variable cross-section characteristic on the time history of crater radius. Moreover the relationships between time history of crater radius (as well as mass of BAD) and the thickness of RHA (from 30mm to 70 mm) and the impact velocity of EFP (1650 m/s to 1860 m/s) are also investigated. The results indicate that: 1) being compared to the variable cross-section characteristic is ignored, the theoretical time history of crater radius is in better agreement with the simulation results when the variable cross-section characteristic is considered;2) being compared to the other three conditions of plug, the theoretical mass of BAD is in the best agreement with the simulation results when the shape of plug is frustum of a cone and the angle between generatrix and bottom is 45- and the axial length of mushroom is considered. 展开更多
关键词 Explosively formed PROJECTILE Behind-armor DEBRIS variable cross-section characteristic Shape of plug Axial length of MUSHROOM Theoretical model
下载PDF
Equivalent bending stiffness of simply supported preflex beam bridge with variable cross-section 被引量:5
5
作者 杨明 黄侨 王德军 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第1期13-17,共5页
In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, ... In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas. 展开更多
关键词 variable cross-section preflex beam equivalent moment of inertia equivalent bending stiffness
下载PDF
Modeling and analysis of piezoelectric beam with periodically variable cross-sections for vibration energy harvesting 被引量:7
6
作者 M.HAJHOSSEINI M.RAFEEYAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第8期1053-1066,共14页
A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigate... A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight. 展开更多
关键词 vibration energy harvesting piezoelectric cantilever beam periodically variable cross-section vibration band gap forced vibration analysis generalized differential quadrature rule (GDQR)
下载PDF
Study of the Bearing Capacity at the Variable Cross-Section of A Riser- Surface Casing Composite Pile 被引量:2
7
作者 LIU Run LIANG Chao 《China Ocean Engineering》 SCIE EI CSCD 2021年第2期262-271,共10页
Reducing the cost of offshore platform construction is an urgent issue for marginal oilfield development.The offshore oil well structure includes a riser and a surface casing.The riser,surface casing and oil well ceme... Reducing the cost of offshore platform construction is an urgent issue for marginal oilfield development.The offshore oil well structure includes a riser and a surface casing.The riser,surface casing and oil well cement can be considered special variable cross-section piles.Replacing or partially replacing the steel pipe pile foundation with a variable cross-section pile to provide the required bearing capacity for an offshore oil platform can reduce the cost of foundation construction and improve the economic efficiency of production.In this paper,the finite element analysis method is used to investigate the variable cross-section bearing mode of composite piles composed of a riser and a surface casing in saturated clay under a vertical load.The calculation formula of the bearing capacity at the variable section is derived based on the theory of spherical cavity expansion,the influencing factors of the bearing capacity coefficient N_(c) are revealed,and the calculation method of N_(c) is proposed.By comparing the calculation results with the results of the centrifuge test,the accuracy and applicability of the calculation method are verified.The results show that the riser composite pile has a rigid core in the soil under the variable cross-section,which increases the bearing capacity at the variable cross-section. 展开更多
关键词 riser-surface casing composite pile variable cross-section bearing capacity coefficient pile end resistance soil rigid core
下载PDF
The development of real time data driving multi-axis linkage and synergic movement control system of 3D variable cross-section roll forming machine 被引量:2
8
作者 管延智 Li Qiang +2 位作者 Wang Haibo Yang Zhenfeng Zheng Yuting 《High Technology Letters》 EI CAS 2013年第3期261-266,共6页
The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential syn... The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential synergic movement of the ganged roller group is used to complete the metal sheet forming according to the shape of the complicated and variable forming part data. The control system should meet the demands of quick response to the test requirements of the product part. A new kind of real time data driving multi-axis linkage and synergic movement control strategy of 3D roll forming is put forward in the paper. In the new control strategy, the forming data are automatically generated according to the shape of the parts, and the multi-axis linkage movement together with cooperative motion among the six stands of the 3D roll forming machine is driven by the real-time information, and the control nodes are also driven by the forming data. The new control strategy is applied to a 48 axis 3D roll forming machine developed by our research center, and the control servo period is less than 10ms. A forming experiment of variable cross section part is carried out, and the forming preci- sion is better than + 0.5mm by the control strategy. The result of the experiment proves that the control strategy has significant potentiality for the development of 3D roll forming production line with large scale, multi-axis ganged and svner^ic movement 展开更多
关键词 real time data driving variable cross-section roll forming multi-axis ganged synergic movement
下载PDF
CFD-Based Numerical Analysis of a Variable Cross-Section Cylinder 被引量:1
9
作者 DUAN Jinlong HUANG Weiping 《Journal of Ocean University of China》 SCIE CAS 2014年第4期584-588,共5页
Using ANSYS-CFX, a general purpose fluid dynamics program, the vortex-induced vibration(VIV) of a variable cross-section cylinder is simulated under uniform current with high Reynolds numbers. Large eddy simulation(LE... Using ANSYS-CFX, a general purpose fluid dynamics program, the vortex-induced vibration(VIV) of a variable cross-section cylinder is simulated under uniform current with high Reynolds numbers. Large eddy simulation(LES) is conducted for studying the fluid-structure interaction. The vortex shedding in the wake, the motion trajectories of a cylinder, the variation of drag and lift forces on the cylinder are analyzed. The results show that the vortices of variable cross-section cylinder are chaotic and are varying along the cylinder. In places where cross-sections are changing significantly, the vortices are more irregular. The motion trail of the cylinder is almost the same but irregular. The drag and lift coefficients of the cylinder are varying with the changes of diameters. 展开更多
关键词 variable cross-section cylinder large eddy simulation fluid-solid interaction drag coefficient lift coefficient vortex shedding
下载PDF
In-Plane Impact Dynamics Analysis of Re-Entrant Honeycomb with Variable Cross-Section 被引量:1
10
作者 Yuanxun Ou Shilin Yan Pin Wen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期209-222,共14页
Due to the unique deformation characteristics of auxetic materials(Poisson’s ratioμ<0),they have better shock resistance and energy absorption properties than traditional materials.Inspired by the concept of vari... Due to the unique deformation characteristics of auxetic materials(Poisson’s ratioμ<0),they have better shock resistance and energy absorption properties than traditional materials.Inspired by the concept of variable crosssection design,a new auxetic re-entrant honeycomb structure is designed in this study.The detailed design method of re-entrant honeycomb with variable cross-section(VCRH)is provided,and five VCRH structures with the same relative density and different cross-section change rates are proposed.The in-plane impact resistance and energy absorption abilities of VCRH under constant velocity are investigated by ABAQUS/EXPLICIT.The results show that the introduction of variable cross-section design can effectively improve the impact resistance and energy absorption abilities of auxetic re-entrant honeycombs.The VCRH structure has better Young’s modulus,plateau stress,and specific energy absorption(SEA)than traditional re-entrant honeycomb(RH).The influence of microstructure parameters(such as cross-section change rateα)on the dynamic impact performance of VCRH is also studied.Results show that,with the increase in impact velocity andα,the plateau stress and SEA of VCRH increase.A positive correlation is also found between the energy absorption efficiency,impact load uniformity andαunder both medium and high impact speeds.These results can provide a reference for designing improved auxetic re-entrant honeycomb structures. 展开更多
关键词 Auxetic re-entrant honeycombs variable cross-section design in-plane impact finite element simulation
下载PDF
Dynamic symmetry breaking and structure-preserving analysis on thelongitudinal wave in an elastic rod with a variable cross-section
11
作者 Jingjing HU Mengbo XU +2 位作者 Weipeng HU Ruisong JIANG Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第1期81-92,共12页
The longitudinal wave propagating in an elastic rod with a variable cross-section owns wide engineering background,in which the longitudinal wave dissipation determines some important performances of the slender struc... The longitudinal wave propagating in an elastic rod with a variable cross-section owns wide engineering background,in which the longitudinal wave dissipation determines some important performances of the slender structure.To reproduce the longitudinal wave dissipation effects on an elastic rod with a variable cross-section,a structure-preserving approach is developed based on the dynamic symmetry breaking theory.For the dynamic model controlling the longitudinal wave propagating in the elastic rod with the variable cross-section,the approximate multi-symplectic form is deduced based on the multi-symplectic method,and the expression of the local energy dissipation for the longitudinal wave propagating in the rod is presented,referring to the dynamic symmetry breaking theory.A structure-preserving method focusing on the residual of the multi-symplectic structure and the local energy dissipation of the dynamic model is constructed by using the midpoint difference discrete method.The longitudinal wave propagating in an elastic rod fixed at one end is simulated,and the local/total energy dissipations of the longitudinal wave are investigated by the constructed structure-preserving scheme in two typical cases in detail. 展开更多
关键词 dynamic symmetry breaking longitudinal wave variable cross-section structure-preserving HAMILTONIAN
下载PDF
THE APPROXIMATE ANALYTICAL SOLUTION FOR THE BUCKLING LOADS OF A THIN-WALLED BOX COLUMN WITH VARIABLE CROSS-SECTION
12
作者 谢用九 宁钦海 陈明伦 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第5期445-456,共12页
For a thin-walled box column with variable cross-section, the three governing equations for torsional-flexural buckling are ordinary differential equations of the second or fourth order with variable coefficients, so ... For a thin-walled box column with variable cross-section, the three governing equations for torsional-flexural buckling are ordinary differential equations of the second or fourth order with variable coefficients, so it is very difficult to solve them by means of an analytic method. In this paper, polynomials are used to approximate the geometric properties of cross-section and certain coefficients of the differential equations. Based on the energy principle and the Galerkin's method, the approximate formulas for calculating the flexural and torsional buckling loads of this kind of columns are developed respectively, and numerical examples are used to verify the correctness of the solutions obtained. The results calculated in this paper provide the basis for demonstrating the stability of thin-walled box columns with variable cross-section. This paper is of practical value. 展开更多
关键词 thin-walled box column with variable cross-section torsional-flexural buckling approximate solutions for buckling loads
全文增补中
Breakdown voltage model and structure realization of a thin silicon layer with linear variable doping on a silicon on insulator high voltage device with multiple step field plates 被引量:2
13
作者 乔明 庄翔 +4 位作者 吴丽娟 章文通 温恒娟 张波 李肇基 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期504-511,共8页
Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltag... Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltage(BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator(SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field(ENDIF),from which the reduced surface field(RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect,but the problem of the high voltage interconnection(HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET(nLDMOS) with MSFP is realized.The experimental breakdown voltage(BV) and specific on-resistance(R on,sp) of the TSL LVD SOI device are 694 V and 21.3 ·mm 2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively. 展开更多
关键词 breakdown voltage model enhanced dielectric layer field thin silicon layer linear variable doping multiple step field plates
下载PDF
Cubic Spline Solutions of Nonlinear Bending and Buckling of Circular Plates with Arbitrarily Variable Thickness 被引量:2
14
作者 侯朝胜 李婧 龙泉 《Transactions of Tianjin University》 EI CAS 2003年第4期321-325,共5页
The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The supp... The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The support can be elastic. Loads imposed can be polynomial distributed loads, uniformly distributed radial forces or moments along the edge respectively or their combinations. Convergent solutions can still be obtained by this method under the load whose value is in great excess of normal one. Under the action of the uniformly distributed loads, linear solutions of circular plates with linearly or quadratically variable thickness are compared with those obtained by the parameter method. Buckling of a circular plate with identical thickness beyond critical thrust is compared with those obtained by the power series method. 展开更多
关键词 variable thickness BUCKLING large deflection circular plate spline function
下载PDF
Analytical solution of rectangular plate with in-plane variable stiffness 被引量:1
15
作者 于天崇 聂国隽 +1 位作者 仲政 褚福运 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第4期395-404,共10页
The bending problem of a thin rectangular plate with in-plane variable stiffness is studied. The basic equation is formulated for the two-opposite-edge simply supported rectangular plate under the distributed loads. T... The bending problem of a thin rectangular plate with in-plane variable stiffness is studied. The basic equation is formulated for the two-opposite-edge simply supported rectangular plate under the distributed loads. The formulation is based on the assumption that the flexural rigidity of the plate varies in the plane following a power form, and Poisson's ratio is constant. A fourth-order partial differential equation with variable coefficients is derived by assuming a Levy-type form for the transverse displacement. The governing equation can be transformed into a Whittaker equation, and an analytical solution is obtained for a thin rectangular plate subjected to the distributed loads. The validity of the present solution is shown by comparing the present results with those of the classical solution. The influence of in-plane variable stiffness on the deflection and bending moment is studied by numerical examples. The analytical solution presented here is useful in the design of rectangular plates with in-plane variable stiffness. 展开更多
关键词 in-plane variable stiffness power form Levy-type solution rectangular plate
下载PDF
Exact solutions for axisymmetric flexural free vibrations of inhomogeneous circular Mindlin plates with variable thickness
16
作者 Jianghong YUAN Weiqiu CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第4期505-526,共22页
Circular plates with radially varying thickness, stiffness, and density are widely used for the structural optimization in engineering. The axisymmetric flexural free vibration of such plates, governed by coupled diff... Circular plates with radially varying thickness, stiffness, and density are widely used for the structural optimization in engineering. The axisymmetric flexural free vibration of such plates, governed by coupled differential equations with variable coefficients by use of the Mindlin plate theory, is very difficult to be studied analytically. In this paper, a novel analytical method is proposed to reduce such governing equations for circular plates to a pair of uncoupled and easily solvable differential equations of the Sturm-Liouville type. There are two important parameters in the reduced equations. One describes the radial variations of the translational inertia and fiexural rigidity with the consideration of the effect of Poisson's ratio. The other reflects the comprehensive effect of the rotatory inertia and shear deformation. The Heun-type equations, recently well-known in physics, are introduced here to solve the flexural free vibration of circular plates analytically, and two basic differential formulae for the local Heun-type functions are discovered for the first time, which will be of great value in enriching the theory of Heun-type differential equations. 展开更多
关键词 free vibration circular Mindlin plate variable thickness inhomogeneous material Heun-type equation
下载PDF
Nonlinear Vibration of Circular Plate with Variable Thickness
17
作者 Ye Zhiming (Shanghai Institute of Applied Mathematics and Mechanics) 《Advances in Manufacturing》 SCIE CAS 1998年第1期30-37,共8页
This paper is concerned with the nonlinear vibration problems of circular plates with variable thickness.The nonlinear equations of plates with variable thickness are extended to the dynamic case.The resulting equatio... This paper is concerned with the nonlinear vibration problems of circular plates with variable thickness.The nonlinear equations of plates with variable thickness are extended to the dynamic case.The resulting equations can be solved by using an iterative method,a Galerkin's approach and a perturbation method.Detailed solutions and numerical results are given for two kinds of boundary conditions,the clamped edge and the supported edge.The results show that the solutions for the case of the plates with uniform thickness can be included in the solution herin as a special case.The effect of various thickness parameters is investigated in detail.Also,a Runge Kutta method is used to solve the free and forced vibrations of plates with variable thickness,and the results are obtained firstly.It has shown that the adoption of variable thickness plate would be useful in engineering design. 展开更多
关键词 nonlinear vibration POST BUCKLING circular plate with variable thickness perturbation method.
下载PDF
LARGE DEFLECTION PROBLEM OF THIN ORTHOTROPIC CIRCULAR  PLATE ON ELASTIC FOUNDATION WITH VARIABLE THICKNESS UNDER UNIFORM PRESSURE
18
作者 王嘉新 刘杰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第5期477-485,共9页
Basic equations for large deflection theory of thin orthotropic circular plate on elastic foundation with variable thickness under uniform pressure are derived in this paper. The second opproximation solutions are obt... Basic equations for large deflection theory of thin orthotropic circular plate on elastic foundation with variable thickness under uniform pressure are derived in this paper. The second opproximation solutions are obtained by means of the modified iteration method. The relation curves of the nondimensional loading and foe deflection, as to the differential ε and μrθ and λ are shown in Figs. 2, 3, 4. In special circumstance, the results are in accordance with those in [1], [6]. 展开更多
关键词 variable thickness thin circular plate large deflection modified iterahon method
下载PDF
NAVIER SOLUTION FOR THE ELASTIC EQUILIBRIUM PROBLEMS OF ANISOTROPIC SKEW THIN PLATE WITE VARIABLE THICKNESS IN NONLINEAR THEORIES
19
作者 周青青 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第4期373-382,共10页
This paper discusses the elastic equilibrium problems of anisotropic skew thin plate of variable thickness simply supported on all four sides in nonlinear theories, and uses the Navier method to seek an approach to th... This paper discusses the elastic equilibrium problems of anisotropic skew thin plate of variable thickness simply supported on all four sides in nonlinear theories, and uses the Navier method to seek an approach to the problem, and to illustrate the solution with the examples. In conclusion, the mention is made of the scope of application and the convergency of the solution. 展开更多
关键词 variable thickness ANISOTROPIC skew thin plate Navier solution
下载PDF
BASIC EQUATIONS OF THE PROBLEM OF THE NONLINEAR UNSYMMETRICAL BENDING FOR ORTHOTROPIC RECTANGULAR THIN PLATE WITH VARIABLE THICKNESS
20
作者 黄家寅 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第7期812-816,共5页
Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction (z-direction),the constitutive equations of the problem of the nonlinear unsymmetrical bendin... Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction (z-direction),the constitutive equations of the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with variable thickness are given;then introducing the dimensionless variables and three small parameters,the dimensionaless governing equations of the deflection function and stress function are given. 展开更多
关键词 orthotropic rectangular thin plate with variable thickness nonlinear unsymmetrical bending equilibrium equation compatibility equation basic equation dimensionless equation
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部