Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the conditio...Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the condition of variable link distance.This variable link is accomplished by the relative motion of a single telescope fixed on the experimental platform to a corner-cube reflector(CCR)installed on a sliding guide.Two acousto–optic modulators with different frequencies are used to separate forward signal from backward signal.With active phase noise suppression,when the CCR moves back and forth at a constant velocity of 20 cm/s and an acceleration of 20 cm/s^(2),we achieve the best frequency stability of 1.9×10^(-16) at 1 s and 7.9×10^(-19) at 1000 s indoors.This work paves the way for future studying optical frequency transfer between ultra-high-orbit satellites.展开更多
A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a va...A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.展开更多
This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)...This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)of snowfall frequency during autumn is mainly characterized by positive anomalies over the Central Siberian Plateau(CSP)and Europe,with opposite anomalies over Central Asia(CA).EOF1 during winter is characterized by positive anomalies in Siberia and negative anomalies in Europe and East Asia(EA).During autumn,EOF1 is associated with the anomalous sea ice in the Kara–Laptev seas(KLS)and sea surface temperature(SST)over the North Atlantic.Increased sea ice in the KLS may cause an increase in the meridional air temperature gradient,resulting in increased synoptic-scale wave activity,thereby inducing increased snowfall frequency over Europe and the CSP.Anomalous increases of both sea ice in the KLS and SST in the North Atlantic may stimulate downstream propagation of Rossby waves and induce an anomalous high in CA corresponding to decreased snowfall frequency.In contrast,EOF1 is mainly affected by the anomalous atmospheric circulation during winter.In the positive phase of the North Atlantic Oscillation(NAO),an anomalous deep cold low(warm high)occurs over Siberia(Europe)leading to increased(decreased)snowfall frequency over Siberia(Europe).The synoptic-scale wave activity excited by the positive NAO can induce downstream Rossby wave propagation and contribute to an anomalous high and descending motion over EA,which may inhibit snowfall.The NAO in winter may be modulated by the Indian Ocean dipole and sea ice in the Barents-Kara-Laptev Seas in autumn.展开更多
The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied.It is shown that the oscillating liquid leads to the generati...The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied.It is shown that the oscillating liquid leads to the generation of intense averaged flows in each of the channel segments.The intensity and direction of these flows depend on the dimensionless oscillating frequency.In the region of studied frequencies,the dynamics of the considered body is examined when the primary vortices emerging in the flow occupy the whole region in each segment.For a fixed frequency,an increase in the oscillation amplitude leads to a phase-inclusion holding effect,i.e.,the body occupies a quasi-stationary position in one of the cells of the vertical channel,while oscillating around its average position.It is also shown that the oscillating motion of a liquid column generates an averaged force acting on the body,the magnitude of which depends on the properties of the body and its position in the channel.The quasi-stationary position is determined by the relative density and size of the body,as well as the dimensionless frequency.The behavior of the body as a function of the amplitude and frequency of fluid oscillation and relative size is discussed in detail.Such findings may be used in the future to control the position of a phase inclusion and/or to strengthen mass transfer effects in a channel of variable cross section by means of fluid oscillations.展开更多
Variable frequency,a new pattern of pulse hydraulic fracturing,is presented for improving permeability in coal seam.A variable frequency pulse hydraulic fracturing testing system was built,the mould with triaxial load...Variable frequency,a new pattern of pulse hydraulic fracturing,is presented for improving permeability in coal seam.A variable frequency pulse hydraulic fracturing testing system was built,the mould with triaxial loading was developed.Based on the monitor methods of pressure sensor and acoustic emission,the trials of two patterns of pulse hydraulic fracturing of single frequency and variable frequency were carried out,and at last fracturing mechanism was analyzed.The results show that the effect of variable frequency on fracture extension is better than that of single frequency based on the analysis of macroscopic figures and AE.And the shortage of single frequency is somewhat remedied when the frequency is variable.Under variable frequency,the pressure process can be divided into three stages:low frequency band,pressure stability band and high frequency band,and rupture pressure of the sample is smaller than that of the condition of single frequency.Based on the Miner fatigue theory,the effect of different loading sequences on sample rupture is discussed and the results show that it is better to select the sequence of low frequency at first and then high frequency.Our achievements can give a basis for the improvement and optimization of the pulse hydraulic fracturing technology.展开更多
Aiming at the cropping operations widely applied in practical industry production, a new method of bar cropping is presented. The rotational speeds of actuating motor of eccentric blocks are controlled by a frequency-...Aiming at the cropping operations widely applied in practical industry production, a new method of bar cropping is presented. The rotational speeds of actuating motor of eccentric blocks are controlled by a frequency-changer, and the shearing die provides the bar with the controllable force, frequency and amplitude of vibration. By utilizing the stress concentration at the bottom of V shape groove on the bar, the low stress bar cropping is realized. The bar cropping experiments of duralumin alloy and steel show that the shear surface has no radial distortion and deviation angle, the cutting force is lower and the die life is longer compared with the common bar cropping method. According to the special feature of cutting surface obtained by the new method, a new method of measurement is proposed and applied to assess the cutting surfaces obtained by the different control curves of frequency. The results show that the linear decrease control method is the best.展开更多
Switch mode power supply (SMPS) is good selection for power supplies of Unmanned Aerial Vehicle (UAV), which is one of the most important interference sources of UAV. The power switches with their high dv/dt and di/dt...Switch mode power supply (SMPS) is good selection for power supplies of Unmanned Aerial Vehicle (UAV), which is one of the most important interference sources of UAV. The power switches with their high dv/dt and di/dt switching slopes are the sources of electromagnetic interference (EMI). In this paper, a variable frequency modulation technology of the forward converter of UAV is presented, which is utilized in SMPS to improve electromagnetic compatibility (EMC). In variable-frequency techniques, power (signal) is transmitted in power converter in wide-band mode in several frequencies that are constantly changing, the EMI spectral performance of the SMPS can be controlled with the modulating pattern and modulation method. The validity of the models and analyses are confirmed experimentally by using a dc/dc forward converter.展开更多
Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum ...Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum output power point can be tracked by decoupling control of active power and reactive power.The research result shows that the net power of generation system delivered to grid in maximum wind energy tracking mode is not the most.We presented a novel maximum power point tracking(MPPT)control strategy by analyzing the DFIG mathematic model and power relations which delivered the maximum power to the grid.The maximum power point could be tracked automatically without measuring wind speed in the control strategy and the control was independent of optimal turbine power curve,which had excellent dynamic and static performances and robustness.Simulation and experimental results testify the accuracy and validity of the control strategy.展开更多
The nonlinear dynamical variation equation and compatible equation of the shallow conical shell with variable thickness are obtained by the theory of nonlinear dynamical variation equation and compatible equation of t...The nonlinear dynamical variation equation and compatible equation of the shallow conical shell with variable thickness are obtained by the theory of nonlinear dynamical variation equation and compatible equation of the circular thin plate with variable thickness. Assuming the thin film tension is composed of two items. The compatible equation is transformed into two independent equations. Selecting the maximum amplitude in the center of the shallow conical shells with variable thickness as the perturbation parameter, the variation equation and the differential equation are transformed into linear expression by theory of perturbation variation method. The nonlinear natural frequency of shallow conical shells with circular bottom and variable thickness under the fixed boundary conditions is solved. In the first approximate equation, the linear natural frequency of shallow conical shells with variable thickness is obtained. In the third approximate equation, the nonlinear natural frequency of it is obtained. The figures of the characteristic curves of the natural frequency varying with stationary loads, large amplitude, and variable thickness coefficient are plotted. A valuable reference is given for dynamic engineering.展开更多
This paper introduces the design and implementation of 1 D variable cutoff frequency (VCF) digital filters. A lowpass to highpass transformation and a lowpass to bandpass transformation for VCF infinite impulse r...This paper introduces the design and implementation of 1 D variable cutoff frequency (VCF) digital filters. A lowpass to highpass transformation and a lowpass to bandpass transformation for VCF infinite impulse response (IIR) filter are presented. The transformed highpass and bandpass filters are implemented in a network structure in which the cutoff frequencies are variable by adjusting single parameter.展开更多
A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can i...A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can improve the crystallization process in the weld bead as a result of the electromagnetic force generated by pulse current. Digital signal processor (DSP) is used to realize the closed-loop control of the first inverter, variable polarity output of the second inverter and high-frequency pulse current superposition.展开更多
To further research the response of the tearing mode(TM) to dynamic resonant magnetic perturbation(DRMP) on the J-TEXT tokamak, a modified series resonant inverter power supply(MSRIPS) with a function of discret...To further research the response of the tearing mode(TM) to dynamic resonant magnetic perturbation(DRMP) on the J-TEXT tokamak, a modified series resonant inverter power supply(MSRIPS) with a function of discrete variable frequency is designed for DRMP coils in this study. The MSRIPS is an AC–DC–AC converter, including a phase-controlled rectifier, an LC filter, an insulated gate bipolar transistor(IGBT) full bridge, a matching transformer, three resonant capacitors with different capacitance values, and three corresponding silicon controlled rectifier(SCR) switches. The function of discrete variable frequency is realized by switching over different resonant capacitors with corresponding SCR switches while matching the corresponding driving frequency of the IGBT full bridge. A detailed switching strategy of the SCR switch is put forward to obtain sinusoidal current waveform and realize current waveform smooth transition during frequency conversion. In addition, a resistor and thyristor bleeder is designed to protect the SCR switch from overvoltage. Manufacturing of the MSRIPS is completed, and the MSRIPS equipment can output current with an amplitude of 1.5 kA when its working frequency jumps among different frequencies. Moreover, the current waveform is sinusoidal and can smoothly transition during frequency conversion. Furthermore, the transition time when the current amplitude rises from zero to a steady state is less than 2 ms during frequency conversion. By using the MSRIPS, the expected discrete variable frequency DRMP is generated, and the phenomenon of the TM being locked to the discrete variable frequency DRMP is observed on the J-TEXT tokamak.展开更多
The paper presents a reliability evaluation method based on fault tree analysis with set theory and minimal cut set as core algorithm, which can be used to evaluate the reliability for industrial grids with wide appli...The paper presents a reliability evaluation method based on fault tree analysis with set theory and minimal cut set as core algorithm, which can be used to evaluate the reliability for industrial grids with wide application of variable frequency drives. The working principle is introduced firstly, based on which the method development considering different system topology designs, backup solutions and redundancy mechanisms are analyzed in details. In the end the proposed method is applied to two cases to show the reliability performance of system with variable frequency drives. The proposed method is also suitable for analyzing the reliability performance of industrial grids with other types of power electronic converter technology.展开更多
Hybrid ultrahigh frequency pulse variable polarity gas tungsten arc welding (HPVP-GTAW) for 2A14-T6 high strength aluminum alloy was carried out and the effects of variable polarity frequency with constant pulse cur...Hybrid ultrahigh frequency pulse variable polarity gas tungsten arc welding (HPVP-GTAW) for 2A14-T6 high strength aluminum alloy was carried out and the effects of variable polarity frequency with constant pulse current frequency 40 kHz on weld bead geometry, microstrueture and microhardness were analyzed. Experimental results indicate that, compared to that of the conventional VP-GTAW process, the weld depth and ratio of weld depth to width are improved significantly by the variable polarity frequency in the HPVP-GTAW process, which the ratio of weld depth to width is improved by 36% at equal variable polarity frequency of 100 Hz, and improved by 55% with that of 200 Hz. Weld microstructure and microhardness distribution are changed obviously with the increase of variable polarity frequency. In the conventional VP-GTA W process, the grains in weld central zone are coarser, and the microhardness in weld central zone and fusion zone is about 95 HV and the lowest 82 HV, respectively. The microhardness is enhanced to a certain extent both in the weld central zone and fusion zone with the variation of variable polarity frequency in the HPVP-GTAW process due to the refinement and uniformity of weld microstructure. With the variable polarity frequency of 600 Hz, the microhardness in weld central zone and fusion zone reaches nearly 110 HV and 97 HV, respectively.展开更多
The invariant, propagator, and wavefunction for a variable frequency harmonic oscillator in an electromagnetic field are obtained by making a specific coordinate transformation and by using the method of phase space p...The invariant, propagator, and wavefunction for a variable frequency harmonic oscillator in an electromagnetic field are obtained by making a specific coordinate transformation and by using the method of phase space path integral method. The probability amplitudes for a dissipative harmonic oscillator in the time varying electric field are obtained.展开更多
In the paper, the method to optimize the rotor structure in variable frequency speed control motors is introduced. The saturation and the skin effect are considered and 2D no-load and load electromagnetic field is cal...In the paper, the method to optimize the rotor structure in variable frequency speed control motors is introduced. The saturation and the skin effect are considered and 2D no-load and load electromagnetic field is calculated in finite elements for a variable frequency speed control motor before and after optimization. Finally, no-load current and operation performance before and after optimization are obtained and the two results are contrasted.展开更多
Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tr...Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.展开更多
in this paper, an electromechanically coupled mathematic model of multi-roller driving system for belt conveyor is set up, and the computing equations for dynamic displacement and dynamic tension of the conveyor are a...in this paper, an electromechanically coupled mathematic model of multi-roller driving system for belt conveyor is set up, and the computing equations for dynamic displacement and dynamic tension of the conveyor are also formulated when the hoister is used for straining. Based on the belt conveyor of main inclined shaft in Chengzhuang coal mine, the driving torque, driving power and starting-speed characteristic of each electric motor are studied and measured when multi-roller variable-frequency drive (power distribution 2∶1) is used. The optimal control and the optimal starting-acceleration of the multi-roller variable-frequency drive are determined by a large number of industrial experiments and theoretical calculations.展开更多
Main Exhauster is one of the main equipment of sintering production. It needs to consume a lot of electricity. Therefore, the system' s reconstruction for energy-saving will effectively reduce electricity for the pro...Main Exhauster is one of the main equipment of sintering production. It needs to consume a lot of electricity. Therefore, the system' s reconstruction for energy-saving will effectively reduce electricity for the production. The paper takes an iron and steel enterprise that had successfully transformed the synchronous motors of main exhauster of sintering as an example, which describes the application of high-voltage variable frequency speed regulation system in main exhauster of Sintering, so as to provide a reference for other iron and steel enterprises.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFB0408300)the National Natural Science Foundation of China(Grant No.62175246)+2 种基金the Natural Science Foundation of Shanghai,China(Grant No.22ZR1471100)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.YIPA2021244)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300701).
文摘Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the condition of variable link distance.This variable link is accomplished by the relative motion of a single telescope fixed on the experimental platform to a corner-cube reflector(CCR)installed on a sliding guide.Two acousto–optic modulators with different frequencies are used to separate forward signal from backward signal.With active phase noise suppression,when the CCR moves back and forth at a constant velocity of 20 cm/s and an acceleration of 20 cm/s^(2),we achieve the best frequency stability of 1.9×10^(-16) at 1 s and 7.9×10^(-19) at 1000 s indoors.This work paves the way for future studying optical frequency transfer between ultra-high-orbit satellites.
文摘A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.
基金supported by the National Natural Science Foundation of China(Grant No.41991283).
文摘This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)of snowfall frequency during autumn is mainly characterized by positive anomalies over the Central Siberian Plateau(CSP)and Europe,with opposite anomalies over Central Asia(CA).EOF1 during winter is characterized by positive anomalies in Siberia and negative anomalies in Europe and East Asia(EA).During autumn,EOF1 is associated with the anomalous sea ice in the Kara–Laptev seas(KLS)and sea surface temperature(SST)over the North Atlantic.Increased sea ice in the KLS may cause an increase in the meridional air temperature gradient,resulting in increased synoptic-scale wave activity,thereby inducing increased snowfall frequency over Europe and the CSP.Anomalous increases of both sea ice in the KLS and SST in the North Atlantic may stimulate downstream propagation of Rossby waves and induce an anomalous high in CA corresponding to decreased snowfall frequency.In contrast,EOF1 is mainly affected by the anomalous atmospheric circulation during winter.In the positive phase of the North Atlantic Oscillation(NAO),an anomalous deep cold low(warm high)occurs over Siberia(Europe)leading to increased(decreased)snowfall frequency over Siberia(Europe).The synoptic-scale wave activity excited by the positive NAO can induce downstream Rossby wave propagation and contribute to an anomalous high and descending motion over EA,which may inhibit snowfall.The NAO in winter may be modulated by the Indian Ocean dipole and sea ice in the Barents-Kara-Laptev Seas in autumn.
文摘The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied.It is shown that the oscillating liquid leads to the generation of intense averaged flows in each of the channel segments.The intensity and direction of these flows depend on the dimensionless oscillating frequency.In the region of studied frequencies,the dynamics of the considered body is examined when the primary vortices emerging in the flow occupy the whole region in each segment.For a fixed frequency,an increase in the oscillation amplitude leads to a phase-inclusion holding effect,i.e.,the body occupies a quasi-stationary position in one of the cells of the vertical channel,while oscillating around its average position.It is also shown that the oscillating motion of a liquid column generates an averaged force acting on the body,the magnitude of which depends on the properties of the body and its position in the channel.The quasi-stationary position is determined by the relative density and size of the body,as well as the dimensionless frequency.The behavior of the body as a function of the amplitude and frequency of fluid oscillation and relative size is discussed in detail.Such findings may be used in the future to control the position of a phase inclusion and/or to strengthen mass transfer effects in a channel of variable cross section by means of fluid oscillations.
基金Financial support for this work,provided by the National Basic Research Program of China(No.2011CB201205)the Natural Science Foundation of Jiangsu Province(No.BK2012571)+1 种基金the Program for New Century Excellent Talents in University(No.NCET-120959)the"Qing-Lan Project"and Collegial Graduate Research and Innovation Program of Jiangsu Province(No.CXZZ13_0955)
文摘Variable frequency,a new pattern of pulse hydraulic fracturing,is presented for improving permeability in coal seam.A variable frequency pulse hydraulic fracturing testing system was built,the mould with triaxial loading was developed.Based on the monitor methods of pressure sensor and acoustic emission,the trials of two patterns of pulse hydraulic fracturing of single frequency and variable frequency were carried out,and at last fracturing mechanism was analyzed.The results show that the effect of variable frequency on fracture extension is better than that of single frequency based on the analysis of macroscopic figures and AE.And the shortage of single frequency is somewhat remedied when the frequency is variable.Under variable frequency,the pressure process can be divided into three stages:low frequency band,pressure stability band and high frequency band,and rupture pressure of the sample is smaller than that of the condition of single frequency.Based on the Miner fatigue theory,the effect of different loading sequences on sample rupture is discussed and the results show that it is better to select the sequence of low frequency at first and then high frequency.Our achievements can give a basis for the improvement and optimization of the pulse hydraulic fracturing technology.
基金This workis supported by the National Natural Science Foundation of China (No50375117)
文摘Aiming at the cropping operations widely applied in practical industry production, a new method of bar cropping is presented. The rotational speeds of actuating motor of eccentric blocks are controlled by a frequency-changer, and the shearing die provides the bar with the controllable force, frequency and amplitude of vibration. By utilizing the stress concentration at the bottom of V shape groove on the bar, the low stress bar cropping is realized. The bar cropping experiments of duralumin alloy and steel show that the shear surface has no radial distortion and deviation angle, the cutting force is lower and the die life is longer compared with the common bar cropping method. According to the special feature of cutting surface obtained by the new method, a new method of measurement is proposed and applied to assess the cutting surfaces obtained by the different control curves of frequency. The results show that the linear decrease control method is the best.
文摘Switch mode power supply (SMPS) is good selection for power supplies of Unmanned Aerial Vehicle (UAV), which is one of the most important interference sources of UAV. The power switches with their high dv/dt and di/dt switching slopes are the sources of electromagnetic interference (EMI). In this paper, a variable frequency modulation technology of the forward converter of UAV is presented, which is utilized in SMPS to improve electromagnetic compatibility (EMC). In variable-frequency techniques, power (signal) is transmitted in power converter in wide-band mode in several frequencies that are constantly changing, the EMI spectral performance of the SMPS can be controlled with the modulating pattern and modulation method. The validity of the models and analyses are confirmed experimentally by using a dc/dc forward converter.
基金Funded by the National Natural Science Foundation of China(No.60974049)the Science and Technology Support Industrial Project of Jiangsu Province(No.BZ2008031,No.BE2008074,and No.BE2009090)+1 种基金the Nantong International Cooperative Project(No.W2009003)the Natural Science Foundation of Nantong University(No.08Z022 and No.08Z025).
文摘Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum output power point can be tracked by decoupling control of active power and reactive power.The research result shows that the net power of generation system delivered to grid in maximum wind energy tracking mode is not the most.We presented a novel maximum power point tracking(MPPT)control strategy by analyzing the DFIG mathematic model and power relations which delivered the maximum power to the grid.The maximum power point could be tracked automatically without measuring wind speed in the control strategy and the control was independent of optimal turbine power curve,which had excellent dynamic and static performances and robustness.Simulation and experimental results testify the accuracy and validity of the control strategy.
文摘The nonlinear dynamical variation equation and compatible equation of the shallow conical shell with variable thickness are obtained by the theory of nonlinear dynamical variation equation and compatible equation of the circular thin plate with variable thickness. Assuming the thin film tension is composed of two items. The compatible equation is transformed into two independent equations. Selecting the maximum amplitude in the center of the shallow conical shells with variable thickness as the perturbation parameter, the variation equation and the differential equation are transformed into linear expression by theory of perturbation variation method. The nonlinear natural frequency of shallow conical shells with circular bottom and variable thickness under the fixed boundary conditions is solved. In the first approximate equation, the linear natural frequency of shallow conical shells with variable thickness is obtained. In the third approximate equation, the nonlinear natural frequency of it is obtained. The figures of the characteristic curves of the natural frequency varying with stationary loads, large amplitude, and variable thickness coefficient are plotted. A valuable reference is given for dynamic engineering.
文摘This paper introduces the design and implementation of 1 D variable cutoff frequency (VCF) digital filters. A lowpass to highpass transformation and a lowpass to bandpass transformation for VCF infinite impulse response (IIR) filter are presented. The transformed highpass and bandpass filters are implemented in a network structure in which the cutoff frequencies are variable by adjusting single parameter.
文摘A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can improve the crystallization process in the weld bead as a result of the electromagnetic force generated by pulse current. Digital signal processor (DSP) is used to realize the closed-loop control of the first inverter, variable polarity output of the second inverter and high-frequency pulse current superposition.
基金supported by the National ITER Project Foundation of China(No.2014GB118000)National Natural Science Foundation of China(No.11405068)
文摘To further research the response of the tearing mode(TM) to dynamic resonant magnetic perturbation(DRMP) on the J-TEXT tokamak, a modified series resonant inverter power supply(MSRIPS) with a function of discrete variable frequency is designed for DRMP coils in this study. The MSRIPS is an AC–DC–AC converter, including a phase-controlled rectifier, an LC filter, an insulated gate bipolar transistor(IGBT) full bridge, a matching transformer, three resonant capacitors with different capacitance values, and three corresponding silicon controlled rectifier(SCR) switches. The function of discrete variable frequency is realized by switching over different resonant capacitors with corresponding SCR switches while matching the corresponding driving frequency of the IGBT full bridge. A detailed switching strategy of the SCR switch is put forward to obtain sinusoidal current waveform and realize current waveform smooth transition during frequency conversion. In addition, a resistor and thyristor bleeder is designed to protect the SCR switch from overvoltage. Manufacturing of the MSRIPS is completed, and the MSRIPS equipment can output current with an amplitude of 1.5 kA when its working frequency jumps among different frequencies. Moreover, the current waveform is sinusoidal and can smoothly transition during frequency conversion. Furthermore, the transition time when the current amplitude rises from zero to a steady state is less than 2 ms during frequency conversion. By using the MSRIPS, the expected discrete variable frequency DRMP is generated, and the phenomenon of the TM being locked to the discrete variable frequency DRMP is observed on the J-TEXT tokamak.
文摘The paper presents a reliability evaluation method based on fault tree analysis with set theory and minimal cut set as core algorithm, which can be used to evaluate the reliability for industrial grids with wide application of variable frequency drives. The working principle is introduced firstly, based on which the method development considering different system topology designs, backup solutions and redundancy mechanisms are analyzed in details. In the end the proposed method is applied to two cases to show the reliability performance of system with variable frequency drives. The proposed method is also suitable for analyzing the reliability performance of industrial grids with other types of power electronic converter technology.
基金This work is supported by the National Natural Science Foundation of China (Grant No. 51005011 ) and the Fundamental Research Funds for the Central Universities ( YWF-12-LGJC-001 ).
文摘Hybrid ultrahigh frequency pulse variable polarity gas tungsten arc welding (HPVP-GTAW) for 2A14-T6 high strength aluminum alloy was carried out and the effects of variable polarity frequency with constant pulse current frequency 40 kHz on weld bead geometry, microstrueture and microhardness were analyzed. Experimental results indicate that, compared to that of the conventional VP-GTAW process, the weld depth and ratio of weld depth to width are improved significantly by the variable polarity frequency in the HPVP-GTAW process, which the ratio of weld depth to width is improved by 36% at equal variable polarity frequency of 100 Hz, and improved by 55% with that of 200 Hz. Weld microstructure and microhardness distribution are changed obviously with the increase of variable polarity frequency. In the conventional VP-GTA W process, the grains in weld central zone are coarser, and the microhardness in weld central zone and fusion zone is about 95 HV and the lowest 82 HV, respectively. The microhardness is enhanced to a certain extent both in the weld central zone and fusion zone with the variation of variable polarity frequency in the HPVP-GTAW process due to the refinement and uniformity of weld microstructure. With the variable polarity frequency of 600 Hz, the microhardness in weld central zone and fusion zone reaches nearly 110 HV and 97 HV, respectively.
文摘The invariant, propagator, and wavefunction for a variable frequency harmonic oscillator in an electromagnetic field are obtained by making a specific coordinate transformation and by using the method of phase space path integral method. The probability amplitudes for a dissipative harmonic oscillator in the time varying electric field are obtained.
文摘In the paper, the method to optimize the rotor structure in variable frequency speed control motors is introduced. The saturation and the skin effect are considered and 2D no-load and load electromagnetic field is calculated in finite elements for a variable frequency speed control motor before and after optimization. Finally, no-load current and operation performance before and after optimization are obtained and the two results are contrasted.
文摘Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.
文摘in this paper, an electromechanically coupled mathematic model of multi-roller driving system for belt conveyor is set up, and the computing equations for dynamic displacement and dynamic tension of the conveyor are also formulated when the hoister is used for straining. Based on the belt conveyor of main inclined shaft in Chengzhuang coal mine, the driving torque, driving power and starting-speed characteristic of each electric motor are studied and measured when multi-roller variable-frequency drive (power distribution 2∶1) is used. The optimal control and the optimal starting-acceleration of the multi-roller variable-frequency drive are determined by a large number of industrial experiments and theoretical calculations.
文摘Main Exhauster is one of the main equipment of sintering production. It needs to consume a lot of electricity. Therefore, the system' s reconstruction for energy-saving will effectively reduce electricity for the production. The paper takes an iron and steel enterprise that had successfully transformed the synchronous motors of main exhauster of sintering as an example, which describes the application of high-voltage variable frequency speed regulation system in main exhauster of Sintering, so as to provide a reference for other iron and steel enterprises.