期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Variable Metric Method for Unconstrained Multiobjective Optimization Problems
1
作者 Jian Chen Gao-Xi Li Xin-Min Yang 《Journal of the Operations Research Society of China》 EI CSCD 2023年第3期409-438,共30页
In this paper,we propose a variable metric method for unconstrained multiobjective optimization problems(MOPs).First,a sequence of points is generated using different positive definite matrices in the generic framewor... In this paper,we propose a variable metric method for unconstrained multiobjective optimization problems(MOPs).First,a sequence of points is generated using different positive definite matrices in the generic framework.It is proved that accumulation points of the sequence are Pareto critical points.Then,without convexity assumption,strong convergence is established for the proposed method.Moreover,we use a common matrix to approximate the Hessian matrices of all objective functions,along which a new nonmonotone line search technique is proposed to achieve a local superlinear convergence rate.Finally,several numerical results demonstrate the effectiveness of the proposed method. 展开更多
关键词 Multiobjective optimization variable metric method Pareto point Superlinear convergence
原文传递
GLOBAL CONVERGENCE OF A CLASS OF OPTIMALLY CONDITIONED SSVM METHODS
2
作者 杨正方 夏爱生 +1 位作者 韩立兴 刘光辉 《Transactions of Tianjin University》 EI CAS 1997年第1期73-76,共4页
This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are glob... This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are globally convergent for general convex functions. 展开更多
关键词 optimally conditioned self scaling variable metric methods global convergence unconstrained optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部