The evaluation of urban flood-waterlogged vulnerability is very important to the safety of urban flood control. In this paper, the evaluation of consolidated index is used. Respectively, AHP and entropy method calcula...The evaluation of urban flood-waterlogged vulnerability is very important to the safety of urban flood control. In this paper, the evaluation of consolidated index is used. Respectively, AHP and entropy method calculate the subjective and objective weight of the evaluation indicators, and combine them by game theory. So we can obtain synthetic weight based on objective and subjective weights. The evaluation of urban flood-waterlogged vulnerability as target layer, a single variable multi-objective fuzzy optimization model is established. We use the model to evaluate flood-waterlogged vulnerability of 13 prefecture-level city in Hunan, and compare it with other evaluation method. The results show that the evaluation method has certain adaptability and reliability, and it' s helpfid to the construction planning of urban flood control.展开更多
In order to solve the problem of weighting factors selection in the conventional finite-control-set model predictive control for a grid-connected three-level inverter,an improved multi-objective model predictive contr...In order to solve the problem of weighting factors selection in the conventional finite-control-set model predictive control for a grid-connected three-level inverter,an improved multi-objective model predictive control without weighting factors based on hierarchical optimization is proposed.Four control objectives are considered in this strategy.The grid current and neutral-point voltage of the DC-link are taken as the objectives in the first optimization hierarchy,and by using fuzzy satisfaction decision,several feasible candidates of voltage vectors are determined.Then,the average switching frequency and common-mode voltage are optimized in the second hierarchy.The average ranking criterion is introduced to sort the objective functions,and the best voltage vector is obtained to realize the coordinated control of multiple objectives.At last,the effectiveness of the proposed strategy is verified by simulation results.展开更多
Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Partic...Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Particle Swarm Optimization(MOPSO).Design/methodology/approach–In fuzzy modeling,complexity,interpretability(or simplicity)as well as accuracy of the obtained model are essential design criteria.Since the performance of the IG-RBFNN model is directly affected by some parameters,such as the fuzzification coefficient used in the FCM,the number of rules and the orders of the polynomials in the consequent parts of the rules,the authors carry out both structural as well as parametric optimization of the network.A multi-objective Particle Swarm Optimization using Crowding Distance(MOPSO-CD)as well as O/WLS learning-based optimization are exploited to carry out the structural and parametric optimization of the model,respectively,while the optimization is of multiobjective character as it is aimed at the simultaneous minimization of complexity and maximization of accuracy.Findings–The performance of the proposed model is illustrated with the aid of three examples.The proposed optimization method leads to an accurate and highly interpretable fuzzy model.Originality/value–A MOPSO-CD as well as O/WLS learning-based optimization are exploited,respectively,to carry out the structural and parametric optimization of the model.As a result,the proposed methodology is interesting for designing an accurate and highly interpretable fuzzy model.展开更多
A model was estabhished for the optimal utilization structure of land resources in Haobei town,Yushe county,Shanxi province.In this model,the resources are taken as variables while the developmen of forestry and anima...A model was estabhished for the optimal utilization structure of land resources in Haobei town,Yushe county,Shanxi province.In this model,the resources are taken as variables while the developmen of forestry and animal husbandry, conservation of soil and water,improvement of ecological environment, increment of cultivated area and improvement of plough quality are taken as purposes.The results show that after the optimal programming the land resources can produce the best economic,ecological and social benefit.展开更多
文摘The evaluation of urban flood-waterlogged vulnerability is very important to the safety of urban flood control. In this paper, the evaluation of consolidated index is used. Respectively, AHP and entropy method calculate the subjective and objective weight of the evaluation indicators, and combine them by game theory. So we can obtain synthetic weight based on objective and subjective weights. The evaluation of urban flood-waterlogged vulnerability as target layer, a single variable multi-objective fuzzy optimization model is established. We use the model to evaluate flood-waterlogged vulnerability of 13 prefecture-level city in Hunan, and compare it with other evaluation method. The results show that the evaluation method has certain adaptability and reliability, and it' s helpfid to the construction planning of urban flood control.
基金Supported by the Key Research and Development Program of Hunan Province of China(2018GK2031)the Independent Research Project of State Key Laboratory of Advance Design and Manufacturing for Vehicle Body(71965005)+2 种基金the Innovative Construction Program of Hunan Province of China(2019RS1016)the 111 Project of China(B17016)the Excellent Innovation Youth Program of Changsha of China(KQ2009037).
文摘In order to solve the problem of weighting factors selection in the conventional finite-control-set model predictive control for a grid-connected three-level inverter,an improved multi-objective model predictive control without weighting factors based on hierarchical optimization is proposed.Four control objectives are considered in this strategy.The grid current and neutral-point voltage of the DC-link are taken as the objectives in the first optimization hierarchy,and by using fuzzy satisfaction decision,several feasible candidates of voltage vectors are determined.Then,the average switching frequency and common-mode voltage are optimized in the second hierarchy.The average ranking criterion is introduced to sort the objective functions,and the best voltage vector is obtained to realize the coordinated control of multiple objectives.At last,the effectiveness of the proposed strategy is verified by simulation results.
基金This work was supported by National Research Foundation of Korea Grant funded by the Korean Government(NRF-2010-D00065)the Grant of the Korean Ministry of Education,Science and Technology(The Regional Core Research Program/Center of Healthcare Technology Development)the GRRC program of Gyeonggi province[GRRC SUWON 2011-B2,Center for U-city Security&Surveillance Technology].
文摘Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Particle Swarm Optimization(MOPSO).Design/methodology/approach–In fuzzy modeling,complexity,interpretability(or simplicity)as well as accuracy of the obtained model are essential design criteria.Since the performance of the IG-RBFNN model is directly affected by some parameters,such as the fuzzification coefficient used in the FCM,the number of rules and the orders of the polynomials in the consequent parts of the rules,the authors carry out both structural as well as parametric optimization of the network.A multi-objective Particle Swarm Optimization using Crowding Distance(MOPSO-CD)as well as O/WLS learning-based optimization are exploited to carry out the structural and parametric optimization of the model,respectively,while the optimization is of multiobjective character as it is aimed at the simultaneous minimization of complexity and maximization of accuracy.Findings–The performance of the proposed model is illustrated with the aid of three examples.The proposed optimization method leads to an accurate and highly interpretable fuzzy model.Originality/value–A MOPSO-CD as well as O/WLS learning-based optimization are exploited,respectively,to carry out the structural and parametric optimization of the model.As a result,the proposed methodology is interesting for designing an accurate and highly interpretable fuzzy model.
文摘A model was estabhished for the optimal utilization structure of land resources in Haobei town,Yushe county,Shanxi province.In this model,the resources are taken as variables while the developmen of forestry and animal husbandry, conservation of soil and water,improvement of ecological environment, increment of cultivated area and improvement of plough quality are taken as purposes.The results show that after the optimal programming the land resources can produce the best economic,ecological and social benefit.