Arc pressure is one of the key factors for variable polarity plasma arc(VPPA) and welding pool formation. In this paper, VPPA pressure is measured by pressure transducer and U-tube barometer methods, and advantages ...Arc pressure is one of the key factors for variable polarity plasma arc(VPPA) and welding pool formation. In this paper, VPPA pressure is measured by pressure transducer and U-tube barometer methods, and advantages and disadvantages of the two methods are compared. The effects of welding parameters, including with straight polarity(SP) current, reverse polarity(RP) current, time ratio of SP to RP, plasma gas flow rate, on VPPA pressure are investigated by using an orthogonal design. The experimental results indicate that the influencing degree of the welding parameters are in the order of plasma gas flow rate, SP current, time ratio of SP to RP, RP current. These results are important to researches of VPPA welding process and its mechanism. The physics behavior of VPPA is taken into account when the above influence mechanisms are analyzed. Firstly, according to the mechanism of the cooling compression to the arc, the compression to VPPA is enhanced with the increase of plasma gas flow, so the VPPA pressure would increase obviously. Secondly, although the temperature of VPPA is as a function of the welding current, the radius of VPPA is also enhanced. So the effects of SP current on VPPA pressure are inferior to the effects of plasma gas flow. Thirdly, VPPA pressure increases as a function of time ratio of SP to RP because the frequency of welding current influences the arc pressure to the some degree; Finally, the RP intervals are farther less than the SP intervals, so the influence to the pressure is minimal.展开更多
Abstract Horizontal welding is important for heavy or huge welding structures. Keyhole mode variable polarity plasma arc welding of aluminum alloy plates with medium thickness was carried out in horizontal position. T...Abstract Horizontal welding is important for heavy or huge welding structures. Keyhole mode variable polarity plasma arc welding of aluminum alloy plates with medium thickness was carried out in horizontal position. The characteristic of welding defects was introduced. Preliminary experiments indicated that the undercut defect could not be eliminated easily. The relationship between welding parameters and the undercut defect showed that this deject could be lessened by using higher heat input. The fluid flow of weld pool was observed by a high speed camera. The fluid flow in weld pool was not symmetric and much of molten metal gathered in the lower part. The fluid flow velocity in the lower part was bigger than that in the upper part. To this end, the formative mechanism of the undercut defect was proposed. The flowability of the molten metal was an influential factor for the undercut defect. A preheating method was designed to verify the formative mechanism.展开更多
Variable polarity plasma arc welding (VPPAW) is one of the most excellent processes used for welding aluminum alloys recently. It combines the advantages of variable polarity welding and plasma arc welding, and can ac...Variable polarity plasma arc welding (VPPAW) is one of the most excellent processes used for welding aluminum alloys recently. It combines the advantages of variable polarity welding and plasma arc welding, and can achieve the most rational heat distribution and cathodic cleaning. With the VPPAW equipment developed by authors, the cathodic cleaning regularity that is one of the most important problems in VPPAW is investigated in this paper. The results will be helpful in realizing the real cleaning mechanism.展开更多
The mechanical properties of the 2219 aluminum alloy welded joints by vertical-up variant polarity plasma arc welding (VPPAW) with keyhole were analyzed. The tensile strength of welded joints can reach 55% of that of ...The mechanical properties of the 2219 aluminum alloy welded joints by vertical-up variant polarity plasma arc welding (VPPAW) with keyhole were analyzed. The tensile strength of welded joints can reach 55% of that of base metal. The microstructure of weld joints was studied to explain the mechanical properties of the weld. The results show that the intensity of weld center is less than that of HAZ, and the intensity of weld center is the worst. So an advanced welding procedures is presented to reduce the heat input and increase the welding speed. The results in this procedures show that the tensile strength of welded joints reaches more than 60% of that of the parent metal, and the specific elongation does not descend.展开更多
In our previous work, a plasma approach for single attosecond pulse (AP) generation was proposed. A few-cycle relativistic circularly polarized laser pulse will induce a single drastic oscillation of plasma boundary...In our previous work, a plasma approach for single attosecond pulse (AP) generation was proposed. A few-cycle relativistic circularly polarized laser pulse will induce a single drastic oscillation of plasma boundary, from which high-order harmonics and furthermore an ultra-intense single AP can be generated naturally after it is reflected. Analytical model and simulations both demonstrate that the process is mostly efficient as the pulse duration is close to the plasma responding time. The effects of plasma density ramp are analyzed here, suggesting that the proposal is still quite efficient with appropriate density gradient in the ramp. At last, a combined approach is employed to obtain single AP with 30 fs incident laser. The relatively large-duration pulse is firstly shortened by a density dropping thin foil, and then reflected from an overdense plasma target. One-dimensional simulation shows that a 600 as single light pulse is generated with peak intensity of 3×10^20 W/cm^2.展开更多
A novel ultrafast-convert hybrid pulse variable polarity gas tungsten arc welding process (HPVP-GTAW) is developed. High frequency pulse square-wave current which has a frequency of more than 20 kHz is exactly integ...A novel ultrafast-convert hybrid pulse variable polarity gas tungsten arc welding process (HPVP-GTAW) is developed. High frequency pulse square-wave current which has a frequency of more than 20 kHz is exactly integrated in the positive polarity current duration. The effects of pulse current parameters on arc characteristics and weld penetration have been studied during the HPVP-GTAW process using Al-5. 8 Mg alloy plates. The arc characteristics studied by arc voltage and its profile, weld penetration noted by the ratio of weld depth to width have been found to be influenced significantly by the pulse current. The experimental results show that the HPVP-GTA W process can improve the arc profile predominantly and obtain the higher weld penetration with lower heat input. The observation may help in understanding the weld characteristics with respect to variation in the pulse current parameters which may be beneficial in using the novel HPVP-GTAW process to produce the better weld quality of aluminum alloy plates.展开更多
A double invert variable polarity plasma arc (VPPA) power source based on 16-bit MCU applied for aluminum alloys was developed. Mechanics, electrical and the produced heat mechanism of VPPAW arc were tested and anal...A double invert variable polarity plasma arc (VPPA) power source based on 16-bit MCU applied for aluminum alloys was developed. Mechanics, electrical and the produced heat mechanism of VPPAW arc were tested and analyzed. Results indicate that during the VPPA welding procedure of aluminum alloy, the arc of electrode negative (EN) has more effect on force, whereas the arc of electrode positive ( EP ) has more effect on heat. It should be noted that keeping the balance of the force and heat is the critical element of VPPAW. This power source had been successfully used to weld aluminum alloy with a 15 mm thickness in vertical welding. The conclusions are applicable to the variable polarity plasma arc welding technique used in the aerospace industry.展开更多
In the laser–plasma interaction,relativistic soliton formation is an interesting nonlinear phenomenon and important light mode convection in plasmas.Here,it is shown by threedimensional particle-in-cell simulations t...In the laser–plasma interaction,relativistic soliton formation is an interesting nonlinear phenomenon and important light mode convection in plasmas.Here,it is shown by threedimensional particle-in-cell simulations that relativistic toroidal solitons,composed of intense light self-consistently trapped in toroidal plasma cavities,can be produced by azimuthallypolarized relativistic laser pulses in a near-critical underdense plasma.展开更多
Variable polarity plasma arc-gas metal arc welding(VPPA-GMAW)integrates the advantages of VPPA and GMAW,and it is particularly applied to weld thick-plates aluminum alloys.High-speed camera and data acquisition system...Variable polarity plasma arc-gas metal arc welding(VPPA-GMAW)integrates the advantages of VPPA and GMAW,and it is particularly applied to weld thick-plates aluminum alloys.High-speed camera and data acquisition system were used to analyze the arc shape and the welding process electrical signal.According to the analysis of arc swing amplitude and the approximate entropy of arc voltage signal denoised by wavelet threshold method,the influence of VPPA frequency on the arc stability was studied.The results show that the approximate entropy of GMAW arc voltage decreases with the increase of VPPA frequency in a certain range,and the stability of the hybrid arc is significantly improved.The spectral analysis shows that the arc stability is reduced due to the resonance effect between the VPPA and the GMAW arc when the VPPA frequency closes to the GMAW arc pulse frequency.The results are helpful to understand hybrid welding mechanism and the selection of welding process parameters.展开更多
基金supported by Key Project of National Natural Science Foundation of China (Grant No.50735006)National Basic Research Program of China(973 Program, Grant No. 2007CB607601)General Project of National Natural Science Foundation of China (Grant No.50675223)
文摘Arc pressure is one of the key factors for variable polarity plasma arc(VPPA) and welding pool formation. In this paper, VPPA pressure is measured by pressure transducer and U-tube barometer methods, and advantages and disadvantages of the two methods are compared. The effects of welding parameters, including with straight polarity(SP) current, reverse polarity(RP) current, time ratio of SP to RP, plasma gas flow rate, on VPPA pressure are investigated by using an orthogonal design. The experimental results indicate that the influencing degree of the welding parameters are in the order of plasma gas flow rate, SP current, time ratio of SP to RP, RP current. These results are important to researches of VPPA welding process and its mechanism. The physics behavior of VPPA is taken into account when the above influence mechanisms are analyzed. Firstly, according to the mechanism of the cooling compression to the arc, the compression to VPPA is enhanced with the increase of plasma gas flow, so the VPPA pressure would increase obviously. Secondly, although the temperature of VPPA is as a function of the welding current, the radius of VPPA is also enhanced. So the effects of SP current on VPPA pressure are inferior to the effects of plasma gas flow. Thirdly, VPPA pressure increases as a function of time ratio of SP to RP because the frequency of welding current influences the arc pressure to the some degree; Finally, the RP intervals are farther less than the SP intervals, so the influence to the pressure is minimal.
基金This research is supported by the National Natural Science Foundation of China (Grant No. 51475105).
文摘Abstract Horizontal welding is important for heavy or huge welding structures. Keyhole mode variable polarity plasma arc welding of aluminum alloy plates with medium thickness was carried out in horizontal position. The characteristic of welding defects was introduced. Preliminary experiments indicated that the undercut defect could not be eliminated easily. The relationship between welding parameters and the undercut defect showed that this deject could be lessened by using higher heat input. The fluid flow of weld pool was observed by a high speed camera. The fluid flow in weld pool was not symmetric and much of molten metal gathered in the lower part. The fluid flow velocity in the lower part was bigger than that in the upper part. To this end, the formative mechanism of the undercut defect was proposed. The flowability of the molten metal was an influential factor for the undercut defect. A preheating method was designed to verify the formative mechanism.
文摘Variable polarity plasma arc welding (VPPAW) is one of the most excellent processes used for welding aluminum alloys recently. It combines the advantages of variable polarity welding and plasma arc welding, and can achieve the most rational heat distribution and cathodic cleaning. With the VPPAW equipment developed by authors, the cathodic cleaning regularity that is one of the most important problems in VPPAW is investigated in this paper. The results will be helpful in realizing the real cleaning mechanism.
文摘The mechanical properties of the 2219 aluminum alloy welded joints by vertical-up variant polarity plasma arc welding (VPPAW) with keyhole were analyzed. The tensile strength of welded joints can reach 55% of that of base metal. The microstructure of weld joints was studied to explain the mechanical properties of the weld. The results show that the intensity of weld center is less than that of HAZ, and the intensity of weld center is the worst. So an advanced welding procedures is presented to reduce the heat input and increase the welding speed. The results in this procedures show that the tensile strength of welded joints reaches more than 60% of that of the parent metal, and the specific elongation does not descend.
基金supported by 973 Program of China(No.2011CB808104)National Natural Science Foundation of China(Nos.11125526,10834008,61008010 and 60921004)Shanghai Natural Science Foundation(No.10ZR1433800)
文摘In our previous work, a plasma approach for single attosecond pulse (AP) generation was proposed. A few-cycle relativistic circularly polarized laser pulse will induce a single drastic oscillation of plasma boundary, from which high-order harmonics and furthermore an ultra-intense single AP can be generated naturally after it is reflected. Analytical model and simulations both demonstrate that the process is mostly efficient as the pulse duration is close to the plasma responding time. The effects of plasma density ramp are analyzed here, suggesting that the proposal is still quite efficient with appropriate density gradient in the ramp. At last, a combined approach is employed to obtain single AP with 30 fs incident laser. The relatively large-duration pulse is firstly shortened by a density dropping thin foil, and then reflected from an overdense plasma target. One-dimensional simulation shows that a 600 as single light pulse is generated with peak intensity of 3×10^20 W/cm^2.
基金The research is supported by the National Natural Science Foundation of China ( No. 50975015 and No. 51005011 ) the China Postdoctoral Science Foundation (No. 20090460186).
文摘A novel ultrafast-convert hybrid pulse variable polarity gas tungsten arc welding process (HPVP-GTAW) is developed. High frequency pulse square-wave current which has a frequency of more than 20 kHz is exactly integrated in the positive polarity current duration. The effects of pulse current parameters on arc characteristics and weld penetration have been studied during the HPVP-GTAW process using Al-5. 8 Mg alloy plates. The arc characteristics studied by arc voltage and its profile, weld penetration noted by the ratio of weld depth to width have been found to be influenced significantly by the pulse current. The experimental results show that the HPVP-GTA W process can improve the arc profile predominantly and obtain the higher weld penetration with lower heat input. The observation may help in understanding the weld characteristics with respect to variation in the pulse current parameters which may be beneficial in using the novel HPVP-GTAW process to produce the better weld quality of aluminum alloy plates.
基金This work was supported by the National Nature Science Foundation of China ( Grant No. 50764007).
文摘A double invert variable polarity plasma arc (VPPA) power source based on 16-bit MCU applied for aluminum alloys was developed. Mechanics, electrical and the produced heat mechanism of VPPAW arc were tested and analyzed. Results indicate that during the VPPA welding procedure of aluminum alloy, the arc of electrode negative (EN) has more effect on force, whereas the arc of electrode positive ( EP ) has more effect on heat. It should be noted that keeping the balance of the force and heat is the critical element of VPPAW. This power source had been successfully used to weld aluminum alloy with a 15 mm thickness in vertical welding. The conclusions are applicable to the variable polarity plasma arc welding technique used in the aerospace industry.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA17040502)。
文摘In the laser–plasma interaction,relativistic soliton formation is an interesting nonlinear phenomenon and important light mode convection in plasmas.Here,it is shown by threedimensional particle-in-cell simulations that relativistic toroidal solitons,composed of intense light self-consistently trapped in toroidal plasma cavities,can be produced by azimuthallypolarized relativistic laser pulses in a near-critical underdense plasma.
基金supported by the National Natural Science Foundation of China(51665044)Natural Science Foundation of Inner Mongolia(2019LH05017)+1 种基金Science and Technology Programs of Inner Mongolia(2020GG0313)Major Basic Research Open Subjects of Inner Mongolia Autonomous Region.
文摘Variable polarity plasma arc-gas metal arc welding(VPPA-GMAW)integrates the advantages of VPPA and GMAW,and it is particularly applied to weld thick-plates aluminum alloys.High-speed camera and data acquisition system were used to analyze the arc shape and the welding process electrical signal.According to the analysis of arc swing amplitude and the approximate entropy of arc voltage signal denoised by wavelet threshold method,the influence of VPPA frequency on the arc stability was studied.The results show that the approximate entropy of GMAW arc voltage decreases with the increase of VPPA frequency in a certain range,and the stability of the hybrid arc is significantly improved.The spectral analysis shows that the arc stability is reduced due to the resonance effect between the VPPA and the GMAW arc when the VPPA frequency closes to the GMAW arc pulse frequency.The results are helpful to understand hybrid welding mechanism and the selection of welding process parameters.