期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimizing progress variable definition in flamelet-based dimension reduction in combustion 被引量:2
1
作者 Jing CHEN Minghou LIU Yiliang CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第11期1481-1498,共18页
An automated method to optimize the definition of the progress variables in the flamelet-based dimension reduction is proposed. The performance of these optimized progress variables in coupling the flamelets and flow ... An automated method to optimize the definition of the progress variables in the flamelet-based dimension reduction is proposed. The performance of these optimized progress variables in coupling the flamelets and flow solver is presented. In the proposed method, the progress variables are defined according to the first two principal components (PCs) from the principal component analysis (PCA) or kernel-density-weighted PCA (KEDPCA) of a set of flamelets. These flamelets can then be mapped to these new progress variables instead of the mixture fraction/conventional progress variables. Thus, a new chemistry look-up table is constructed. A priori validation of these optimized progress variables and the new chemistry table is implemented in a CH4/N2/air lift-off flame. The reconstruction of the lift-off flame shows that the optimized progress variables perform better than the conventional ones, especially in the high temperature area. The coefficient determinations (R2 statistics) show that the KEDPCA performs slightly better than the PCA except for some minor species. The main advantage of the KEDPCA is that it is less sensitive to the database. Meanwhile, the criteria for the optimization are proposed and discussed. The constraint that the progress variables should monotonically evolve from fresh gas to burnt gas is analyzed in detail. 展开更多
关键词 principal component analysis (PCA) oprogress variable flamelet-basedmodel dimension reduction
下载PDF
Geographical classification of Nanfeng mandarin by near infrared spectroscopy coupled with chemometrics methods
2
作者 Xuan Zhang Yiping Du +2 位作者 Peijin Tong Yuanlong Wei Man Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2014年第6期70-76,共7页
Near infrared spectroscopy(NIRS),coupled with principal component analysis and wavelength selection techniques,has been sed to develop a robust and reliable reduced-spectrum classifi-cation model for determining the g... Near infrared spectroscopy(NIRS),coupled with principal component analysis and wavelength selection techniques,has been sed to develop a robust and reliable reduced-spectrum classifi-cation model for determining the geographical origins of Nanfeng mandarins.The application of the changeable size moving window principal component analysis(CSMWPCA)provided a notably improved lassification model,with correct classification rates of 92.00%,100.00%,90.00%,100.00%,100.00%,100.00%and 100.00%for Fujian,Guangxi,Hunan,Baishe,Baofeng,Qiawan,Sanxi samples,respectively,as well as,a total dassification rate of 97.52%in the wavelength range from 1007 to 1296 nm.To test and apply the proposed method,the procedure was applied to the analysis of 59 samples in an independent test set.Good identification results(correct rate of 96.61%)were also received.The improvement achieved by the application of CSMWPCA method was particularly remarkable when taking the low complexities of the final model(290 variables)into account.The results of the study showed the great potential of NIRS as a fast,nondestructive and environmentally acceptable method for the rapid and reliable determination for geographical classifcation of Nanfeng mandarins. 展开更多
关键词 Near infrared spectroscopy Nanfeng mandarin geographical origin changeable size moving window principal component analysis variable selection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部