Based on the precise integration method (PIM), a coupling technique of the high order multiplication perturbation method (HOMPM) and the reduction method is proposed to solve variable coefficient singularly pertur...Based on the precise integration method (PIM), a coupling technique of the high order multiplication perturbation method (HOMPM) and the reduction method is proposed to solve variable coefficient singularly perturbed two-point boundary value prob lems (TPBVPs) with one boundary layer. First, the inhomogeneous ordinary differential equations (ODEs) are transformed into the homogeneous ODEs by variable coefficient dimensional expansion. Then, the whole interval is divided evenly, and the transfer ma trix in each sub-interval is worked out through the HOMPM. Finally, a group of algebraic equations are given based on the relationship between the neighboring sub-intervals, which are solved by the reduction method. Numerical results show that the present method is highly efficient.展开更多
In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, t...In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, this equation may be simplified into the equation given by F.Tdlke(1938)[3]. R.A. Clark(1950 )[4] and V. V.Novozhilov(1951)[5]. When the horizontal radius of the shell of revolution is much larger than the average radius of curvature of meridian curve, this equation in complex variable may be simplified into the equation for slander ring shells. If the ring shell is circular in shape, then this equation can be reduced into the equation in complex variable for slander circular ring shells given by this author (1979)[6]. If the form of elliptic cross-section is near a circle, then the equation of slander ring shell with near-circle ellipitic cross-section may be reduced to the complex variable equation similar in form for circular slander ring shells.展开更多
By using the modified iteration method of large deflection theory of plates with variable thichness[1], we solve the problem of circular plates with variable thickness subjected to combined loads under the boundary co...By using the modified iteration method of large deflection theory of plates with variable thichness[1], we solve the problem of circular plates with variable thickness subjected to combined loads under the boundary conditions of the clamped edges and get comparatively more accurate second-order approximate analytical solution. If the results of this paper are degraded into the special cases, the results coinciding with those of papers [1,2] can be obtained. In this paper, the characteristic curves are plotted and some comparisons are made. The results of this paper are satisfactory.展开更多
For a general second-order variable coefficient elliptic boundary value problem in three dimensions, the authors derive the weak estimate of the first type for tensor-product linear pentahedral finite elements. In add...For a general second-order variable coefficient elliptic boundary value problem in three dimensions, the authors derive the weak estimate of the first type for tensor-product linear pentahedral finite elements. In addition, the estimate for the W1,1-seminorm of the discrete derivative Green's function is given. Finally, the authors show that the derivatives of the finite element solution uh and the corresponding interpolant Hu are superclose in the pointwise sense of the L∞-norm.展开更多
This paper deals with discerete phenomena in uniqueness in the Cauchy problemsum from i?j=0 to n (i?j/0)aijuxixj+sum from i=0 to n(i/0)biuxi+cu=0,x0>0, u(0,x1,…,xn)=ux0(0,x1,…,xn) =0We prove that the prob...This paper deals with discerete phenomena in uniqueness in the Cauchy problemsum from i?j=0 to n (i?j/0)aijuxixj+sum from i=0 to n(i/0)biuxi+cu=0,x0>0, u(0,x1,…,xn)=ux0(0,x1,…,xn) =0We prove that the problem only has trivial solutions in the neighbourhood of the origin, if bo(0)-Z sum from i=1 to n(i/1)(2ai + 1)λi≠0,λi>0 being the square roots of the eigenvalues of the product of matrices(?2aoo/?xi?xi(0)(i?j=i,….?and (aif(0))ii?f….,and ai being the arbitrarily non-negative integers.展开更多
The simulation of multi-domain,multi-physics mathematical models with uncertain parameters can be quite demanding in terms of algorithm design and com-putation costs.Our main objective in this paper is to examine a ph...The simulation of multi-domain,multi-physics mathematical models with uncertain parameters can be quite demanding in terms of algorithm design and com-putation costs.Our main objective in this paper is to examine a physical interface coupling between two random dissipative systems with uncertain parameters.Due to the complexity and uncertainty inherent in such interface-coupled problems,un-certain diffusion coefficients or friction parameters often arise,leading to consid-ering random systems.We employ Monte Carlo methods to produce independent and identically distributed deterministic heat-heat model samples to address ran-dom systems,and adroitly integrate the ensemble idea to facilitate the fast calcu-lation of these samples.To achieve unconditional stability,we introduce the scalar auxiliary variable(SAV)method to overcome the time constraints of the ensemble implicit-explicit algorithm.Furthermore,for a more accurate and stable scheme,the ensemble data-passing algorithm is raised,which is unconditionally stable and convergent without any auxiliary variables.These algorithms employ the same co-efficient matrix for multiple linear systems and enable easy parallelization,which can significantly reduce the computational cost.Finally,numerical experiments are conducted to support the theoretical results and showcase the unique features of the proposed algorithms.展开更多
基金Project supported by the National Natural Science Foundation of China(Key Program)(Nos.11132004 and 51078145)
文摘Based on the precise integration method (PIM), a coupling technique of the high order multiplication perturbation method (HOMPM) and the reduction method is proposed to solve variable coefficient singularly perturbed two-point boundary value prob lems (TPBVPs) with one boundary layer. First, the inhomogeneous ordinary differential equations (ODEs) are transformed into the homogeneous ODEs by variable coefficient dimensional expansion. Then, the whole interval is divided evenly, and the transfer ma trix in each sub-interval is worked out through the HOMPM. Finally, a group of algebraic equations are given based on the relationship between the neighboring sub-intervals, which are solved by the reduction method. Numerical results show that the present method is highly efficient.
文摘In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, this equation may be simplified into the equation given by F.Tdlke(1938)[3]. R.A. Clark(1950 )[4] and V. V.Novozhilov(1951)[5]. When the horizontal radius of the shell of revolution is much larger than the average radius of curvature of meridian curve, this equation in complex variable may be simplified into the equation for slander ring shells. If the ring shell is circular in shape, then this equation can be reduced into the equation in complex variable for slander circular ring shells given by this author (1979)[6]. If the form of elliptic cross-section is near a circle, then the equation of slander ring shell with near-circle ellipitic cross-section may be reduced to the complex variable equation similar in form for circular slander ring shells.
文摘By using the modified iteration method of large deflection theory of plates with variable thichness[1], we solve the problem of circular plates with variable thickness subjected to combined loads under the boundary conditions of the clamped edges and get comparatively more accurate second-order approximate analytical solution. If the results of this paper are degraded into the special cases, the results coinciding with those of papers [1,2] can be obtained. In this paper, the characteristic curves are plotted and some comparisons are made. The results of this paper are satisfactory.
基金supported by the Natural Science Foundation of Zhejiang Province under Grant No.Y6090131the Natural Science Foundation of Ningbo City under Grant No.2010A610101
文摘For a general second-order variable coefficient elliptic boundary value problem in three dimensions, the authors derive the weak estimate of the first type for tensor-product linear pentahedral finite elements. In addition, the estimate for the W1,1-seminorm of the discrete derivative Green's function is given. Finally, the authors show that the derivatives of the finite element solution uh and the corresponding interpolant Hu are superclose in the pointwise sense of the L∞-norm.
文摘This paper deals with discerete phenomena in uniqueness in the Cauchy problemsum from i?j=0 to n (i?j/0)aijuxixj+sum from i=0 to n(i/0)biuxi+cu=0,x0>0, u(0,x1,…,xn)=ux0(0,x1,…,xn) =0We prove that the problem only has trivial solutions in the neighbourhood of the origin, if bo(0)-Z sum from i=1 to n(i/1)(2ai + 1)λi≠0,λi>0 being the square roots of the eigenvalues of the product of matrices(?2aoo/?xi?xi(0)(i?j=i,….?and (aif(0))ii?f….,and ai being the arbitrarily non-negative integers.
文摘The simulation of multi-domain,multi-physics mathematical models with uncertain parameters can be quite demanding in terms of algorithm design and com-putation costs.Our main objective in this paper is to examine a physical interface coupling between two random dissipative systems with uncertain parameters.Due to the complexity and uncertainty inherent in such interface-coupled problems,un-certain diffusion coefficients or friction parameters often arise,leading to consid-ering random systems.We employ Monte Carlo methods to produce independent and identically distributed deterministic heat-heat model samples to address ran-dom systems,and adroitly integrate the ensemble idea to facilitate the fast calcu-lation of these samples.To achieve unconditional stability,we introduce the scalar auxiliary variable(SAV)method to overcome the time constraints of the ensemble implicit-explicit algorithm.Furthermore,for a more accurate and stable scheme,the ensemble data-passing algorithm is raised,which is unconditionally stable and convergent without any auxiliary variables.These algorithms employ the same co-efficient matrix for multiple linear systems and enable easy parallelization,which can significantly reduce the computational cost.Finally,numerical experiments are conducted to support the theoretical results and showcase the unique features of the proposed algorithms.