期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Text Classification Using Sentential Frequent Itemsets
1
作者 刘石竹 胡和平 《Journal of Computer Science & Technology》 SCIE EI CSCD 2007年第2期334-336,F0003,共4页
Text classification techniques mostly rely on single term analysis of the document data set, while more concepts, especially the specific ones, are usually conveyed by set of terms. To achieve more accurate text class... Text classification techniques mostly rely on single term analysis of the document data set, while more concepts, especially the specific ones, are usually conveyed by set of terms. To achieve more accurate text classifier, more informative feature including frequent co-occurring words in the same sentence and their weights are particularly important in such scenarios. In this paper, we propose a novel approach using sentential frequent itemset, a concept comes from association rule mining, for text classification, which views a sentence rather than a document as a transaction, and uses a variable precision rough set based method to evaluate each sentential frequent itemset's contribution to the classification. Experiments over the Reuters and newsgroup corpus are carried out, which validate the practicability of the proposed system. 展开更多
关键词 text classification sentential frequent itemsets variable precision rough set model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部