Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turb...Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turbines. On the basis of simplified and proper model of variable speed variable pitch wind turbines, the effective wind speed is estimated using extended Kaiman filter. Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other. At below-rated wind speed, the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture. At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power. The simulation shows the effectiveness of the intelligent control.展开更多
This paper presents a variable speed control strategy for wind turbines in order to capture maximum wind power.Wind turbines are modeled as a two-mass drive-train system with generator torque control.Based on the obta...This paper presents a variable speed control strategy for wind turbines in order to capture maximum wind power.Wind turbines are modeled as a two-mass drive-train system with generator torque control.Based on the obtained wind turbine model,variable speed control schemes are developed.Nonlinear tracking controllers are designed to achieve asymptotic tracking for a prescribed rotor speed reference signal so as to yield maximum wind power capture.Due to the difficulty of torsional angle measurement,an observer-based control scheme that uses only rotor speed information is further developed for global asymptotic output tracking.The effectiveness of the proposed control methods is illustrated by simulation results.展开更多
Frequency and voltage of embedded variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) is strongly affected by wind speed fluctuations. In practice, power imbalance between supply...Frequency and voltage of embedded variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) is strongly affected by wind speed fluctuations. In practice, power imbalance between supply and demand is also common, especially when VSWT-PMSG is connected to a weak micro grid (MG). If load demand fluctuations become high, isolated MG may be unable to stabilize the frequency and voltage so that battery storage needs to be installed into the MG to adjust energy supply and demand. To allow flexible control of active and reactive power flow from/to battery storage, grid-supporting inverters are used. For a system that contains highly nonlinear components, the use of conventional linear proportional-integral-derivative (PID) controllers may cause system performance deterioration. Additionally, these controllers show slow, oscillating responses, and complex equations are required to obtain optimum responses in other controllers. To cope with these limitations, this paper proposes PID-type fuzzy controller (PIDfc) design to control grid-supporting inverter of battery. To ensure safe battery operating limits, we also propose a new controller scheme called intelligent battery protection (IBP). This IBP is integrated into PIDfc. Several simulation tests are performed to verify the scheme’s effectiveness. The results show that the proposed PIDfc controller exhibits improved performance and acceptable responses, and can be used instead of conventional controllers.展开更多
Major problem with grid tied micro wind turbine is synchronization and wind variability. Due to this problem the stability of available grid gets reduced. The stability can be achieved by output power control of the t...Major problem with grid tied micro wind turbine is synchronization and wind variability. Due to this problem the stability of available grid gets reduced. The stability can be achieved by output power control of the turbine. Major part of many countries like India, the annual mean wind speed is not high. The rated wind speed of turbine remain around 11 m/s and cut in is around 3.5 m/s. Due to this problem we aimed to develop a sustainable wind energy system that can provide stable power supply even at the locations of low wind speed of 2 - 4 m/s. To address this issue, a momentary impulse or external torque to the rotor by external motor is one of the good options to maintain the momentum of blades and thus provide stability for sufficient time. Various theoretical calculations and experiments are conducted on the above method. This would increase the output power and also the efficiency of wind turbine. We show that Return-On-Investment will be high as compared with other grid connected turbines. Our proposed concept in the present study, if implemented properly, can help the installation of number of wind turbines even at domestic level. It also makes the consumers energy independent and promotes the use of wind as a source of energy and may enter as a rooftop energy supply system similar to solar.展开更多
Protection system for DC-link circuit of back-to-back converter of PMSG (Permanent Magnet Synchronous Generator) based wind turbine is essential part for the system to ride through a network fault in grid system. Vo...Protection system for DC-link circuit of back-to-back converter of PMSG (Permanent Magnet Synchronous Generator) based wind turbine is essential part for the system to ride through a network fault in grid system. Voltage on the DC-link circuit can be increased significantly due to power unbalance between stator side converter and grid side converter. Increase of DC-link circuit voltage can lead to a damage of IGBT of the converter and control system failure. In this paper performance enhancement of DC-link protection of PMSG based Wind turbine by using new control system of buck converter is proposed. The buck converter is used to control supplied voltage of a breaking resistor to dissipate energy from the wind generator during network disturbance. In order to investigate effectiveness of the proposed DC-link protection system, fault analysis is performed in the simulation study by using PSCAD/EMTDC software program. In addition, comparative analysis between the proposed protection system and the conventional protection system using DC chopper is also performed.展开更多
In this work, an intelligent artificial control of a variable speed wind turbine (PMSG) is proposed. First, a mathematical model of turbine written at variable speed is established to investigate simulations results. ...In this work, an intelligent artificial control of a variable speed wind turbine (PMSG) is proposed. First, a mathematical model of turbine written at variable speed is established to investigate simulations results. In order to optimize energy production from wind, a pitch angle and DC bus control law is synthesized using PI controllers. Then, an intelligent artificial control such as fuzzy logic and artificial neural network control is applied. Its simulated performances are then compared to those of a classical PI controller. Results obtained in MATLAB/Simulink environment show that the fuzzy and the neuro control is more robust and has superior dynamic performance and hence is found to be a suitable replacement of the conventional PI controller for the high performance drive applications.展开更多
This paper presents a nonlinear control approach to variable speed wind turbine(VSWT)with a wind speed estimator.The dynamics of the wind turbine(WT)is derived from single mass model.In this work,a modified Newton Rap...This paper presents a nonlinear control approach to variable speed wind turbine(VSWT)with a wind speed estimator.The dynamics of the wind turbine(WT)is derived from single mass model.In this work,a modified Newton Raphson estimator has been considered for exact estimation of effective wind speed.The main objective of this work is to extract maximum energy from the wind at below rated wind speed while reducing drive train oscillation.In order to achieve the above objectives,VSWT should operate close to the optimal power coefficient.The generator torque is considered as the control input to achieve maximum energy capture.From the literature,it is clear that existing linear and nonlinear control techniques suffer from poor tracking of WT dynamics,increased power loss and complex control law.In addition,they are not robust with respect to input disturbances.In order to overcome the above drawbacks,adaptive fuzzy integral sliding mode control(AFISMC)is proposed for VSWT control.The proposed controller is tested with different types of disturbances and compared with other nonlinear controllers such as sliding mode control and integral sliding mode control.The result shows the better performance of AFISMC and its robustness to input disturbances.In this paper,the discontinuity in integral sliding mode controller is smoothed by using hyperbolic tangent function,and the sliding gain is adapted using a fuzzy technique which makes the controller more robust.展开更多
In this paper,load frequency control is performed for a two-area power system incorporating a high penetration of renewable energy sources.A droop controller for a type 3 wind turbine is used to extract the stored kin...In this paper,load frequency control is performed for a two-area power system incorporating a high penetration of renewable energy sources.A droop controller for a type 3 wind turbine is used to extract the stored kinetic energy from the rotating masses during sudden load disturbances.An auxiliary storage controller is applied to achieve effec-tive frequency response.The coot optimization algorithm(COA)is applied to allocate the optimum parameters of the fractional-order proportional integral derivative(FOPID),droop and auxiliary storage controllers.The fitness function is represented by the summation of integral square deviations in tie line power,and Areas 1 and 2 frequency errors.The robustness of the COA is proven by comparing the results with benchmarked optimizers including:atomic orbital search,honey badger algorithm,water cycle algorithm and particle swarm optimization.Performance assessment is confirmed in the following four scenarios:(i)optimization while including PID controllers;(ii)optimization while including FOPID controllers;(iii)validation of COA results under various load disturbances;and(iv)validation of the proposed controllers under varying weather conditions.展开更多
文摘Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turbines. On the basis of simplified and proper model of variable speed variable pitch wind turbines, the effective wind speed is estimated using extended Kaiman filter. Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other. At below-rated wind speed, the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture. At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power. The simulation shows the effectiveness of the intelligent control.
基金supported by the Key Project of National Natural Science Foundation of China(61533009)the 111 Project(B08015)the Research Projects(KQC201105300002A,JCY20130329152125731,JCYJ20150403161923519)
文摘This paper presents a variable speed control strategy for wind turbines in order to capture maximum wind power.Wind turbines are modeled as a two-mass drive-train system with generator torque control.Based on the obtained wind turbine model,variable speed control schemes are developed.Nonlinear tracking controllers are designed to achieve asymptotic tracking for a prescribed rotor speed reference signal so as to yield maximum wind power capture.Due to the difficulty of torsional angle measurement,an observer-based control scheme that uses only rotor speed information is further developed for global asymptotic output tracking.The effectiveness of the proposed control methods is illustrated by simulation results.
文摘Frequency and voltage of embedded variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) is strongly affected by wind speed fluctuations. In practice, power imbalance between supply and demand is also common, especially when VSWT-PMSG is connected to a weak micro grid (MG). If load demand fluctuations become high, isolated MG may be unable to stabilize the frequency and voltage so that battery storage needs to be installed into the MG to adjust energy supply and demand. To allow flexible control of active and reactive power flow from/to battery storage, grid-supporting inverters are used. For a system that contains highly nonlinear components, the use of conventional linear proportional-integral-derivative (PID) controllers may cause system performance deterioration. Additionally, these controllers show slow, oscillating responses, and complex equations are required to obtain optimum responses in other controllers. To cope with these limitations, this paper proposes PID-type fuzzy controller (PIDfc) design to control grid-supporting inverter of battery. To ensure safe battery operating limits, we also propose a new controller scheme called intelligent battery protection (IBP). This IBP is integrated into PIDfc. Several simulation tests are performed to verify the scheme’s effectiveness. The results show that the proposed PIDfc controller exhibits improved performance and acceptable responses, and can be used instead of conventional controllers.
文摘Major problem with grid tied micro wind turbine is synchronization and wind variability. Due to this problem the stability of available grid gets reduced. The stability can be achieved by output power control of the turbine. Major part of many countries like India, the annual mean wind speed is not high. The rated wind speed of turbine remain around 11 m/s and cut in is around 3.5 m/s. Due to this problem we aimed to develop a sustainable wind energy system that can provide stable power supply even at the locations of low wind speed of 2 - 4 m/s. To address this issue, a momentary impulse or external torque to the rotor by external motor is one of the good options to maintain the momentum of blades and thus provide stability for sufficient time. Various theoretical calculations and experiments are conducted on the above method. This would increase the output power and also the efficiency of wind turbine. We show that Return-On-Investment will be high as compared with other grid connected turbines. Our proposed concept in the present study, if implemented properly, can help the installation of number of wind turbines even at domestic level. It also makes the consumers energy independent and promotes the use of wind as a source of energy and may enter as a rooftop energy supply system similar to solar.
文摘Protection system for DC-link circuit of back-to-back converter of PMSG (Permanent Magnet Synchronous Generator) based wind turbine is essential part for the system to ride through a network fault in grid system. Voltage on the DC-link circuit can be increased significantly due to power unbalance between stator side converter and grid side converter. Increase of DC-link circuit voltage can lead to a damage of IGBT of the converter and control system failure. In this paper performance enhancement of DC-link protection of PMSG based Wind turbine by using new control system of buck converter is proposed. The buck converter is used to control supplied voltage of a breaking resistor to dissipate energy from the wind generator during network disturbance. In order to investigate effectiveness of the proposed DC-link protection system, fault analysis is performed in the simulation study by using PSCAD/EMTDC software program. In addition, comparative analysis between the proposed protection system and the conventional protection system using DC chopper is also performed.
文摘In this work, an intelligent artificial control of a variable speed wind turbine (PMSG) is proposed. First, a mathematical model of turbine written at variable speed is established to investigate simulations results. In order to optimize energy production from wind, a pitch angle and DC bus control law is synthesized using PI controllers. Then, an intelligent artificial control such as fuzzy logic and artificial neural network control is applied. Its simulated performances are then compared to those of a classical PI controller. Results obtained in MATLAB/Simulink environment show that the fuzzy and the neuro control is more robust and has superior dynamic performance and hence is found to be a suitable replacement of the conventional PI controller for the high performance drive applications.
文摘This paper presents a nonlinear control approach to variable speed wind turbine(VSWT)with a wind speed estimator.The dynamics of the wind turbine(WT)is derived from single mass model.In this work,a modified Newton Raphson estimator has been considered for exact estimation of effective wind speed.The main objective of this work is to extract maximum energy from the wind at below rated wind speed while reducing drive train oscillation.In order to achieve the above objectives,VSWT should operate close to the optimal power coefficient.The generator torque is considered as the control input to achieve maximum energy capture.From the literature,it is clear that existing linear and nonlinear control techniques suffer from poor tracking of WT dynamics,increased power loss and complex control law.In addition,they are not robust with respect to input disturbances.In order to overcome the above drawbacks,adaptive fuzzy integral sliding mode control(AFISMC)is proposed for VSWT control.The proposed controller is tested with different types of disturbances and compared with other nonlinear controllers such as sliding mode control and integral sliding mode control.The result shows the better performance of AFISMC and its robustness to input disturbances.In this paper,the discontinuity in integral sliding mode controller is smoothed by using hyperbolic tangent function,and the sliding gain is adapted using a fuzzy technique which makes the controller more robust.
文摘In this paper,load frequency control is performed for a two-area power system incorporating a high penetration of renewable energy sources.A droop controller for a type 3 wind turbine is used to extract the stored kinetic energy from the rotating masses during sudden load disturbances.An auxiliary storage controller is applied to achieve effec-tive frequency response.The coot optimization algorithm(COA)is applied to allocate the optimum parameters of the fractional-order proportional integral derivative(FOPID),droop and auxiliary storage controllers.The fitness function is represented by the summation of integral square deviations in tie line power,and Areas 1 and 2 frequency errors.The robustness of the COA is proven by comparing the results with benchmarked optimizers including:atomic orbital search,honey badger algorithm,water cycle algorithm and particle swarm optimization.Performance assessment is confirmed in the following four scenarios:(i)optimization while including PID controllers;(ii)optimization while including FOPID controllers;(iii)validation of COA results under various load disturbances;and(iv)validation of the proposed controllers under varying weather conditions.