Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characte...Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characteristic parameters and hindering effective inverse interpretation. Considering the complexity and non-homogeneous spatial distribution of environmental noise and based on the theory of adaptive noise cancellation, a model system for noise cancellation using multi-reference coils was constructed to receive MRS signals. The feasibility of this system with theoretical calculation and experiments was analyzed and a modified sigmoid variable step size least mean square(SVSLMS) algorithm for noise cancellation was presented. The simulation results show that, the multi-reference coil method performs better than the single one on both signal-to-noise ratio(SNR) improvement and signal waveform optimization after filtering, under the condition of different noise correlations in the reference coils and primary detecting coils and different SNRs. In particular, when the noise correlation is poor and the SNR<0, the SNR can be improved by more than 8 dB after filtering with multi-reference coils. And the average fitting errors for initial amplitude and relaxation time are within 5%. Compared with the normalized least mean square(NLMS) algorithm and multichannel Wiener filter and processing field test data, the effectiveness of the proposed method is verified.展开更多
Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,cha...Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,channel equalization is carried out at the receiver.Given that the con-ventional least mean square(LMS)equilibrium algorithm usually suffer from drawbacks such as the inability to converge quickly in large step sizes and poor stability in small step sizes when searching for optimal weights,in this paper,a design scheme for adaptive equalization with dynamic step size LMS optimization is proposed,which can further improve the convergence and error stability of the algorithm by calling the Sigmoid function and introducing three new parameters to control the range of step size values,adjust the steepness of step size,and reduce steady-state errors in small step sta-ges.Theoretical analysis and simulation results demonstrate that compared with the conventional LMS algorithm and the neural network-based residual deep neural network(Res-DNN)algorithm,the adopted dynamic step size LMS optimization scheme can not only obtain faster convergence speed,but also get smaller error values in the signal recovery process,thereby achieving better bit error rate(BER)performance.展开更多
The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and sym...The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and symbolic function and step size factor is proposed.It establishes a new updating method of step factor that is related to step factor and error signal.This work makes an analysis from 3 aspects:theoretical analysis,theoretical verification and specific experiments.The experimental results show that the proposed algorithm is superior to other variable step size algorithms in convergence speed and steady-state error.展开更多
By analyzing algorithms available for variable step size least mean square(LMS)adaptive filter,a new modified LMS adaptive filtering algorithm with variable step size is proposed,along with performance analysis based ...By analyzing algorithms available for variable step size least mean square(LMS)adaptive filter,a new modified LMS adaptive filtering algorithm with variable step size is proposed,along with performance analysis based on different parameters.Compared with the existing algorithms through the simulation,the proposed algorithm has faster convergence speed and smaller steady state error.展开更多
A new variable step-size algorithm for a second-order lattice form structure adaptive infinite impulse response (IIR) notch filter to detection and estimation frequency of sinusoids in Gaussian noises is proposed. U...A new variable step-size algorithm for a second-order lattice form structure adaptive infinite impulse response (IIR) notch filter to detection and estimation frequency of sinusoids in Gaussian noises is proposed. Utilizing least square kurtosis of output signals as a cost function, the new gradient-based algorithm to update frequency of the adaptive IIR notch filter and the new variable step-size algorithm are given. The computer simulation results show that the proposed algorithm has better ability in suppressing colored Gaussian noises and better accuracy in estimating parameters at low SNR than previous algorithms.展开更多
为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean squa...为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean square)、ShFxLMS(sinh filtered-x least mean square)、SSFxLMS算法的参数进行优化。分别采用高斯白噪声和实测簇绒地毯织机噪声为输入信号,采用FxLMS、SFxLMS、ShFxLMS、SSFxLMS算法进行噪声主动控制仿真,对比分析这4种算法的性能。结果表明:与其他3种算法相比,采用SSFxLMS算法对高斯白噪声和簇绒地毯织机噪声进行控制时,误差信号的平均绝对值更小,平均降噪量与收敛速度也有大幅度提升。由此可知,SSFxLMS算法有效改善了FxLMS算法无法兼顾收敛速度和稳态误差的问题,研究结果为噪声主动控制算法设计提供了一定的参考。展开更多
针对自适应最小均方误差(Least Mean Square,LMS)滤波算法迭代步长在算法收敛速度、稳态误差间的折中问题,设计了一种基于双曲正切函数的新型变步长算法,算法以双曲正切函数为基础,建立步长因子μ(n)与误差信号e(n)的非线性函数关系,并...针对自适应最小均方误差(Least Mean Square,LMS)滤波算法迭代步长在算法收敛速度、稳态误差间的折中问题,设计了一种基于双曲正切函数的新型变步长算法,算法以双曲正切函数为基础,建立步长因子μ(n)与误差信号e(n)的非线性函数关系,并引入参数α、β和m,设计了一种新的步长调整公式,使得在算法迭代初始阶段采用较大步长因子,达到更快的收敛速度,在接近收敛时采用较小的步长因子,获得更小的稳态误差。通过仿真分析了不同参数对算法性能的影响,与已有典型变步长算法相比,论文算法具有更快的收敛速度、更小的稳态误差和更优的追踪能力。展开更多
针对经典盲均衡算法收敛速度较慢和稳态误差较大的问题,提出了一种基于变步长恒模算法(Constant Modulus Algorithm, CMA)和判决引导的最小均方(Decision Directed Least Mean Square, DD-LMS)算法的双模式切换盲均衡算法。在算法收敛...针对经典盲均衡算法收敛速度较慢和稳态误差较大的问题,提出了一种基于变步长恒模算法(Constant Modulus Algorithm, CMA)和判决引导的最小均方(Decision Directed Least Mean Square, DD-LMS)算法的双模式切换盲均衡算法。在算法收敛初期采用CMA算法,以确保算法可以较快收敛。在收敛之后切换至DD-LMS算法,以进一步降低稳态误差。通过设定阈值来切换算法,取相邻多次迭代误差的平均值作为算法的切换值,以确保算法切换时机的合理性。另外,引入Softsign变步长函数并加入3个参数对该函数进行改进,使得Softsign变步长函数可以依据不同信道环境设定最佳参数,同时提高算法的收敛速度。仿真结果表明,在卫星通用信道条件下,所提算法的收敛迭代次数约为1 000次,稳态误差为-12 dB,在信噪比为15 dB时,误码率为1×10~(-6)。与相关算法对比,所提算法的收敛速度较高,误码率和稳态误差较低。展开更多
A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization f...A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization factor(RF) is then employed to control the contribution made by the MD constraint in the cost function. Analysis results show that the RF can be taken as a combination of the step size and regularization parameter in the conventional NLMS. This implies that these parameters can be jointly controlled by simply tuning the RF as the proposed algorithm does. It also demonstrates that the RF can accelerate the convergence rate of the proposed algorithm and its optimal value can be obtained by minimizing the squared noise-free posteriori error. A method for automatically determining the value of the RF is also presented, which is free of any prior knowledge of the noise. While simulation results verify the analytical ones, it is also illustrated that the performance of the proposed algorithm is superior to the state-of-art ones in both the steady-state misalignment and the convergence rate. A novel algorithm is proposed to solve some problems. Simulation results show the effectiveness of the proposed algorithm.展开更多
Filtered-x least mean square(Fx-LMS) algorithm is popular in many adaptive processes. As its contradiction between convergence speed and stead-state error, the improvements of Fx-LMS algorithm with variable step size(...Filtered-x least mean square(Fx-LMS) algorithm is popular in many adaptive processes. As its contradiction between convergence speed and stead-state error, the improvements of Fx-LMS algorithm with variable step size(VSS) have been developed. To strengthen the robustness of variable step size least mean square(VSSLMS) algorithms to noise disturbance in active vibration control(AVC) application, nine VSSLMS algorithms are introduced in detail. Then an improved VSSLMS algorithm is proposed for better performance. At last, the performance of these VSSLMS algorithms are compared in AVC experimental system with different noise level. The experimental results verifies the effectiveness and robustness of the proposed VSSLMS algorithm in AVC application.展开更多
在信号处理领域,传统的自适应滤波算法采用的固定步长会导致稳态误差和收敛速度无法同时兼顾。针对这个问题,对最小平均p范数(Least Mean p-norm,LMP)算法进行改进,提出了一种基于改进双曲正切(tanh)函数的变步长最小平均p范数算法。该...在信号处理领域,传统的自适应滤波算法采用的固定步长会导致稳态误差和收敛速度无法同时兼顾。针对这个问题,对最小平均p范数(Least Mean p-norm,LMP)算法进行改进,提出了一种基于改进双曲正切(tanh)函数的变步长最小平均p范数算法。该算法利用改进的tanh函数来调节步长,采用移动加权平均法构造变步长函数;同时引入了一个调节函数以进一步提升算法的性能。通过在海洋脉冲噪声干扰下进行仿真,实验表明,与已有的固定步长和变步长算法相比,改进的变步长LMP算法较好地兼顾系统的收敛速度和稳态误差;引入调节函数后的新算法在保证原有算法收敛速度的同时进一步降低了算法的稳态误差,从而兼顾了算法的收敛性和稳定性,具有较好的可行性。展开更多
针对非高斯环境下传统变步长LMS(Variable step-size least mean square,VSS-LMS)算法性能不佳的问题,基于传统的VSS-LMS算法利用双曲正弦函数构建变步长的更新策略,提出一种基于双曲正弦函数的变步长LMS算法。并在理论上分析了新提出VS...针对非高斯环境下传统变步长LMS(Variable step-size least mean square,VSS-LMS)算法性能不佳的问题,基于传统的VSS-LMS算法利用双曲正弦函数构建变步长的更新策略,提出一种基于双曲正弦函数的变步长LMS算法。并在理论上分析了新提出VSS-LMS算法的收敛性与算法复杂度,并给出在不同输入信号时对两种特性的线性系统的VSS-LMS算法的辨识结果,且每次仿真中都在不同分布的非高斯噪声下进行。结果表明,提出的算法相比Log-NLMS算法和改进G-SVSLMS算法,新提出的VSS-LMS算法具有更快的收敛速度和较好的稳态特性,且稳态误差趋于理论的SNR。展开更多
In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coef...In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coefcient. Inspired by this result, a modified PNLMS algorithm based on precise magnitude estimate is proposed. The simulation results indicate that in contrast to the traditional PNLMS algorithm, the proposed algorithm achieves faster convergence speed in the initial convergence state and lower misalignment in the stead stage with much less computational complexity.展开更多
基金Projects(41204079,41504086)supported by the National Natural Science Foundation of ChinaProject(20160101281JC)supported by the Natural Science Foundation of Jilin Province,ChinaProjects(2016M590258,2015T80301)supported by the Postdoctoral Science Foundation of China
文摘Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characteristic parameters and hindering effective inverse interpretation. Considering the complexity and non-homogeneous spatial distribution of environmental noise and based on the theory of adaptive noise cancellation, a model system for noise cancellation using multi-reference coils was constructed to receive MRS signals. The feasibility of this system with theoretical calculation and experiments was analyzed and a modified sigmoid variable step size least mean square(SVSLMS) algorithm for noise cancellation was presented. The simulation results show that, the multi-reference coil method performs better than the single one on both signal-to-noise ratio(SNR) improvement and signal waveform optimization after filtering, under the condition of different noise correlations in the reference coils and primary detecting coils and different SNRs. In particular, when the noise correlation is poor and the SNR<0, the SNR can be improved by more than 8 dB after filtering with multi-reference coils. And the average fitting errors for initial amplitude and relaxation time are within 5%. Compared with the normalized least mean square(NLMS) algorithm and multichannel Wiener filter and processing field test data, the effectiveness of the proposed method is verified.
基金the National Natural Science Foundation of China(No.61601296,61701295)the Science and Technology Innovation Action Plan Project of Shanghai Science and Technology Commission(No.20511103500)the Talent Program of Shanghai University of Engineering Science(No.2018RC43).
文摘Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,channel equalization is carried out at the receiver.Given that the con-ventional least mean square(LMS)equilibrium algorithm usually suffer from drawbacks such as the inability to converge quickly in large step sizes and poor stability in small step sizes when searching for optimal weights,in this paper,a design scheme for adaptive equalization with dynamic step size LMS optimization is proposed,which can further improve the convergence and error stability of the algorithm by calling the Sigmoid function and introducing three new parameters to control the range of step size values,adjust the steepness of step size,and reduce steady-state errors in small step sta-ges.Theoretical analysis and simulation results demonstrate that compared with the conventional LMS algorithm and the neural network-based residual deep neural network(Res-DNN)algorithm,the adopted dynamic step size LMS optimization scheme can not only obtain faster convergence speed,but also get smaller error values in the signal recovery process,thereby achieving better bit error rate(BER)performance.
基金the National Natural Science Foundation of China(No.51575328,61503232).
文摘The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and symbolic function and step size factor is proposed.It establishes a new updating method of step factor that is related to step factor and error signal.This work makes an analysis from 3 aspects:theoretical analysis,theoretical verification and specific experiments.The experimental results show that the proposed algorithm is superior to other variable step size algorithms in convergence speed and steady-state error.
基金Natural Science Foundation of Shandong Province of China(No.ZR2012FM011)Shandong University of Science and Technology Research Fund(No.2010KYTD101)
文摘By analyzing algorithms available for variable step size least mean square(LMS)adaptive filter,a new modified LMS adaptive filtering algorithm with variable step size is proposed,along with performance analysis based on different parameters.Compared with the existing algorithms through the simulation,the proposed algorithm has faster convergence speed and smaller steady state error.
文摘A new variable step-size algorithm for a second-order lattice form structure adaptive infinite impulse response (IIR) notch filter to detection and estimation frequency of sinusoids in Gaussian noises is proposed. Utilizing least square kurtosis of output signals as a cost function, the new gradient-based algorithm to update frequency of the adaptive IIR notch filter and the new variable step-size algorithm are given. The computer simulation results show that the proposed algorithm has better ability in suppressing colored Gaussian noises and better accuracy in estimating parameters at low SNR than previous algorithms.
文摘为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean square)、ShFxLMS(sinh filtered-x least mean square)、SSFxLMS算法的参数进行优化。分别采用高斯白噪声和实测簇绒地毯织机噪声为输入信号,采用FxLMS、SFxLMS、ShFxLMS、SSFxLMS算法进行噪声主动控制仿真,对比分析这4种算法的性能。结果表明:与其他3种算法相比,采用SSFxLMS算法对高斯白噪声和簇绒地毯织机噪声进行控制时,误差信号的平均绝对值更小,平均降噪量与收敛速度也有大幅度提升。由此可知,SSFxLMS算法有效改善了FxLMS算法无法兼顾收敛速度和稳态误差的问题,研究结果为噪声主动控制算法设计提供了一定的参考。
文摘针对自适应最小均方误差(Least Mean Square,LMS)滤波算法迭代步长在算法收敛速度、稳态误差间的折中问题,设计了一种基于双曲正切函数的新型变步长算法,算法以双曲正切函数为基础,建立步长因子μ(n)与误差信号e(n)的非线性函数关系,并引入参数α、β和m,设计了一种新的步长调整公式,使得在算法迭代初始阶段采用较大步长因子,达到更快的收敛速度,在接近收敛时采用较小的步长因子,获得更小的稳态误差。通过仿真分析了不同参数对算法性能的影响,与已有典型变步长算法相比,论文算法具有更快的收敛速度、更小的稳态误差和更优的追踪能力。
基金supported by the National Natural Science Foundation of China(61571131 11604055)
文摘A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization factor(RF) is then employed to control the contribution made by the MD constraint in the cost function. Analysis results show that the RF can be taken as a combination of the step size and regularization parameter in the conventional NLMS. This implies that these parameters can be jointly controlled by simply tuning the RF as the proposed algorithm does. It also demonstrates that the RF can accelerate the convergence rate of the proposed algorithm and its optimal value can be obtained by minimizing the squared noise-free posteriori error. A method for automatically determining the value of the RF is also presented, which is free of any prior knowledge of the noise. While simulation results verify the analytical ones, it is also illustrated that the performance of the proposed algorithm is superior to the state-of-art ones in both the steady-state misalignment and the convergence rate. A novel algorithm is proposed to solve some problems. Simulation results show the effectiveness of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(No.51575328,61503232)the Shanghai Municipal Education Commission and Shanghai Education Development Foundation(No.15CG44)。
文摘Filtered-x least mean square(Fx-LMS) algorithm is popular in many adaptive processes. As its contradiction between convergence speed and stead-state error, the improvements of Fx-LMS algorithm with variable step size(VSS) have been developed. To strengthen the robustness of variable step size least mean square(VSSLMS) algorithms to noise disturbance in active vibration control(AVC) application, nine VSSLMS algorithms are introduced in detail. Then an improved VSSLMS algorithm is proposed for better performance. At last, the performance of these VSSLMS algorithms are compared in AVC experimental system with different noise level. The experimental results verifies the effectiveness and robustness of the proposed VSSLMS algorithm in AVC application.
文摘在信号处理领域,传统的自适应滤波算法采用的固定步长会导致稳态误差和收敛速度无法同时兼顾。针对这个问题,对最小平均p范数(Least Mean p-norm,LMP)算法进行改进,提出了一种基于改进双曲正切(tanh)函数的变步长最小平均p范数算法。该算法利用改进的tanh函数来调节步长,采用移动加权平均法构造变步长函数;同时引入了一个调节函数以进一步提升算法的性能。通过在海洋脉冲噪声干扰下进行仿真,实验表明,与已有的固定步长和变步长算法相比,改进的变步长LMP算法较好地兼顾系统的收敛速度和稳态误差;引入调节函数后的新算法在保证原有算法收敛速度的同时进一步降低了算法的稳态误差,从而兼顾了算法的收敛性和稳定性,具有较好的可行性。
文摘针对非高斯环境下传统变步长LMS(Variable step-size least mean square,VSS-LMS)算法性能不佳的问题,基于传统的VSS-LMS算法利用双曲正弦函数构建变步长的更新策略,提出一种基于双曲正弦函数的变步长LMS算法。并在理论上分析了新提出VSS-LMS算法的收敛性与算法复杂度,并给出在不同输入信号时对两种特性的线性系统的VSS-LMS算法的辨识结果,且每次仿真中都在不同分布的非高斯噪声下进行。结果表明,提出的算法相比Log-NLMS算法和改进G-SVSLMS算法,新提出的VSS-LMS算法具有更快的收敛速度和较好的稳态特性,且稳态误差趋于理论的SNR。
文摘In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coefcient. Inspired by this result, a modified PNLMS algorithm based on precise magnitude estimate is proposed. The simulation results indicate that in contrast to the traditional PNLMS algorithm, the proposed algorithm achieves faster convergence speed in the initial convergence state and lower misalignment in the stead stage with much less computational complexity.