To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean s...To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean square(LMS)method,a new logarithmic-sigmoid variable step-size LMS(LG-SVSLMS)was proposed and applied to estimate the direction of arrival(DOA)of orthogonal frequency division multiple access(OFDMA)signals.Based on the proposed LG-SVSLMS,a non-blind DOA estimation system for OFDMA signals was constructed.The proposed LG-SVSLMS adopts a new multi-parameter step-size update function which combines the sigmoid function and the logarithmic function.It controls the adjustment magnitude of step-size during the initial and steady state phases of the LMS method to achieve both a high convergence speed and low steady state maladjustment.Finally,simulation was conducted to verify the performance of the LG-SVSLMS.The simulation results show that the non-blind DOA estimation system based on the LG-SVSLMS can accurately estimate the DOA of the target signal in the scenario where interference signals from multi-source and multi-path fading signals arrive at the third-party devices asynchronously with the target signal,and the estimation deviation is within±3°.The non-blind DOA estimation for OFDMA signals with the proposed LG-SVSLMS is of great significance for the instant positioning technology of mobile terminals based on the adaptive antenna array.展开更多
重构GRAPES(Global/Regional Assimilation and Prediction System)全球、区域一体化变分同化系统中的极小化控制变量,提升中、小尺度同化分析能力,为中国气象局业务区域数值预报系统CMA-MESO提供千米尺度适用的同化方案。新方案用纬向...重构GRAPES(Global/Regional Assimilation and Prediction System)全球、区域一体化变分同化系统中的极小化控制变量,提升中、小尺度同化分析能力,为中国气象局业务区域数值预报系统CMA-MESO提供千米尺度适用的同化方案。新方案用纬向风速(u)和经向风速(v)替代原有流函数和势函数作为新的风场控制变量,采用温度和地面气压(T,ps)替代原有非平衡无量纲气压作为新的质量场控制变量,同时不再考虑准地转平衡约束,而是采用连续方程弱约束保证分析平衡。背景误差参数统计和数值试验结果表明,采用重构后的极小化控制变量,观测信息传播更加局地,分析结构更加合理,避免了原方案在中、小尺度应用时存在的虚假相关问题。连续方程弱约束的引入,限制了同化分析中辐合、辐散的不合理增长,帮助新方案在分析更加局地的同时保证分析平衡。为期1个月的连续同化循环和预报试验结果表明,新方案可以减小风场和质量场分析误差,CMAMESO系统地面降水和10 m风场的预报评分显著提升。展开更多
A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization f...A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization factor(RF) is then employed to control the contribution made by the MD constraint in the cost function. Analysis results show that the RF can be taken as a combination of the step size and regularization parameter in the conventional NLMS. This implies that these parameters can be jointly controlled by simply tuning the RF as the proposed algorithm does. It also demonstrates that the RF can accelerate the convergence rate of the proposed algorithm and its optimal value can be obtained by minimizing the squared noise-free posteriori error. A method for automatically determining the value of the RF is also presented, which is free of any prior knowledge of the noise. While simulation results verify the analytical ones, it is also illustrated that the performance of the proposed algorithm is superior to the state-of-art ones in both the steady-state misalignment and the convergence rate. A novel algorithm is proposed to solve some problems. Simulation results show the effectiveness of the proposed algorithm.展开更多
In this work,we analyze the three-step backward differentiation formula(BDF3)method for solving the Allen-Cahn equation on variable grids.For BDF2 method,the discrete orthogonal convolution(DOC)kernels are positive,th...In this work,we analyze the three-step backward differentiation formula(BDF3)method for solving the Allen-Cahn equation on variable grids.For BDF2 method,the discrete orthogonal convolution(DOC)kernels are positive,the stability and convergence analysis are well established in[Liao and Zhang,Math.Comp.,90(2021),1207–1226]and[Chen,Yu,and Zhang,arXiv:2108.02910,2021].However,the numerical analysis for BDF3 method with variable steps seems to be highly nontrivial due to the additional degrees of freedom and the non-positivity of DOC kernels.By developing a novel spectral norm inequality,the unconditional stability and convergence are rigorously proved under the updated step ratio restriction rk:=τk/τk−1≤1.405 for BDF3 method.Finally,numerical experiments are performed to illustrate the theoretical results.To the best of our knowledge,this is the first theoretical analysis of variable steps BDF3 method for the Allen-Cahn equation.展开更多
To solve the contradiction between convergence rate and steady-state error in least mean square (LMS) algorithm, basing on independence assumption, this paper proposes and proves the optimal step-size theorem from the...To solve the contradiction between convergence rate and steady-state error in least mean square (LMS) algorithm, basing on independence assumption, this paper proposes and proves the optimal step-size theorem from the view of minimizing mean squared error (MSE). The theorem reveals the one-to-one mapping between the optimal step-size and MSE. Following the theorem, optimal variable step-size LMS (OVS-LMS) model, describing the theoretical bound of the convergence rate of LMS algorithm, is constructed. Then we discuss the selection of initial optimal step-size and updating of optimal step-size at the time of unknown system changing. At last an optimal step-size LMS algorithm is proposed and tested in various environments. Simulation results show the proposed algorithm is very close to the theoretical bound.展开更多
Implicit-explicit (IMEX) linear multistep methods are popular techniques for solving partial differential equations (PDEs) with terms of different types. While fixed timestep versions of such schemes have been dev...Implicit-explicit (IMEX) linear multistep methods are popular techniques for solving partial differential equations (PDEs) with terms of different types. While fixed timestep versions of such schemes have been developed and studied, implicit-explicit schemes also naturally arise in general situations where the temporal smoothness of the solution changes. In this paper we consider easily implementable variable step-size implicit-explicit (VSIMEX) linear multistep methods for time-dependent PDEs. Families of order-p, pstep VSIMEX schemes are constructed and analyzed, where p ranges from 1 to 4. The corresponding schemes are simple to implement and have the property that they reduce to the classical IMEX schemes whenever constant time step-sizes are imposed. The methods are validated on the Burgers' equation. These results demonstrate that by varying the time step-size, VSIMEX methods can outperform their fixed time step counterparts while still maintaining good numerical behavior.展开更多
This paper proposes a robust adaptive filter based on the exponent sin cost to improve the capability against Gaussian or multiple types of non-Gaussian noises of the adaptive filtering algorithm when dealing with tim...This paper proposes a robust adaptive filter based on the exponent sin cost to improve the capability against Gaussian or multiple types of non-Gaussian noises of the adaptive filtering algorithm when dealing with time-varying/time-invariant linear systems function exponent sin(ExpSin).Then a variable step-size(VSS)-ExpSin algorithm is extended further.Besides,the stepsize,the convergence,and the steady-state performance of the proposed algorithm are validated experimentally.The Monte Carlo simulation results of linear system identification illustrate the principle and efficiency of this proposed adaptive filtering algorithm.Results suggest that the proposed adaptive filtering algorithm has superior performance when estimating the unknown linear systems under multiple-types measurement noises.展开更多
With independence assumption, this paper proposes and proves the superior step-size theorem on least mean square (LMS) algorithm, from the view of minimizing mean squared error (MSE). Following the theorem we construc...With independence assumption, this paper proposes and proves the superior step-size theorem on least mean square (LMS) algorithm, from the view of minimizing mean squared error (MSE). Following the theorem we construct a parallel variable step-size LMS filters algorithm. The theoretical model of the proposed algorithm is analyzed in detail. Simulations show the proposed theoretical model is quite close to the optimal variable step-size LMS (OVS-LMS) model. The experimental learning curves of the proposed algorithm also show the fastest convergence and fine tracking performance. The proposed algorithm is therefore a good realization of the OVS-LMS model.展开更多
Aiming at the stability and others properties of active magnetic bearing (AMB) system influenced by the periodic unbalance stimulation synchronous with rotor rotational speed, a new real-time adaptive feed-forward u...Aiming at the stability and others properties of active magnetic bearing (AMB) system influenced by the periodic unbalance stimulation synchronous with rotor rotational speed, a new real-time adaptive feed-forward unbalance force compensation scheme is proposed based on variable step-size least mean square(LMS) algorithm as the feed-forward compensation controller. The controller can provide some suitable sinusoidal signals to com- pensate the feedback unbalance response signals synchronous with the rotary frequency, then reduce the fluctua- tion of the control currents and weaken the active control of AMB system. The variable step-size proportional to the rotational frequency is deduced by analyzing the principle of normal LMS algorithm and its deficiency in the application of real-time filtering of AMB system. Experimental results show that the new method can implement real-time unbalance force compensation in a wide frequency band, reduce the effect of unbalance stimulant force on the housing of AMB system, and provide convenience to improve rotational speed.展开更多
基金The Social Development Projects of Jiangsu Science and Technology Department(No.BE2018704)the Technological Innovation Projects of Ministry of Public Security of China(No.20170001)。
文摘To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean square(LMS)method,a new logarithmic-sigmoid variable step-size LMS(LG-SVSLMS)was proposed and applied to estimate the direction of arrival(DOA)of orthogonal frequency division multiple access(OFDMA)signals.Based on the proposed LG-SVSLMS,a non-blind DOA estimation system for OFDMA signals was constructed.The proposed LG-SVSLMS adopts a new multi-parameter step-size update function which combines the sigmoid function and the logarithmic function.It controls the adjustment magnitude of step-size during the initial and steady state phases of the LMS method to achieve both a high convergence speed and low steady state maladjustment.Finally,simulation was conducted to verify the performance of the LG-SVSLMS.The simulation results show that the non-blind DOA estimation system based on the LG-SVSLMS can accurately estimate the DOA of the target signal in the scenario where interference signals from multi-source and multi-path fading signals arrive at the third-party devices asynchronously with the target signal,and the estimation deviation is within±3°.The non-blind DOA estimation for OFDMA signals with the proposed LG-SVSLMS is of great significance for the instant positioning technology of mobile terminals based on the adaptive antenna array.
基金supported by the National Natural Science Foundation of China(61571131 11604055)
文摘A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization factor(RF) is then employed to control the contribution made by the MD constraint in the cost function. Analysis results show that the RF can be taken as a combination of the step size and regularization parameter in the conventional NLMS. This implies that these parameters can be jointly controlled by simply tuning the RF as the proposed algorithm does. It also demonstrates that the RF can accelerate the convergence rate of the proposed algorithm and its optimal value can be obtained by minimizing the squared noise-free posteriori error. A method for automatically determining the value of the RF is also presented, which is free of any prior knowledge of the noise. While simulation results verify the analytical ones, it is also illustrated that the performance of the proposed algorithm is superior to the state-of-art ones in both the steady-state misalignment and the convergence rate. A novel algorithm is proposed to solve some problems. Simulation results show the effectiveness of the proposed algorithm.
基金supported by the Science Fund for Distinguished Young Scholars of Gansu Province(Grant No.23JRRA1020)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2023-06).
文摘In this work,we analyze the three-step backward differentiation formula(BDF3)method for solving the Allen-Cahn equation on variable grids.For BDF2 method,the discrete orthogonal convolution(DOC)kernels are positive,the stability and convergence analysis are well established in[Liao and Zhang,Math.Comp.,90(2021),1207–1226]and[Chen,Yu,and Zhang,arXiv:2108.02910,2021].However,the numerical analysis for BDF3 method with variable steps seems to be highly nontrivial due to the additional degrees of freedom and the non-positivity of DOC kernels.By developing a novel spectral norm inequality,the unconditional stability and convergence are rigorously proved under the updated step ratio restriction rk:=τk/τk−1≤1.405 for BDF3 method.Finally,numerical experiments are performed to illustrate the theoretical results.To the best of our knowledge,this is the first theoretical analysis of variable steps BDF3 method for the Allen-Cahn equation.
基金This work was supported in part by the National Fundamental Research Program(Grant No.G1998030406)the National Natural Science Foundation of China(Grant No.69972020)by the State Key Lab on Microwave and Digital Communications,Department of Electronics Engineering,Tsinghua University.
文摘To solve the contradiction between convergence rate and steady-state error in least mean square (LMS) algorithm, basing on independence assumption, this paper proposes and proves the optimal step-size theorem from the view of minimizing mean squared error (MSE). The theorem reveals the one-to-one mapping between the optimal step-size and MSE. Following the theorem, optimal variable step-size LMS (OVS-LMS) model, describing the theoretical bound of the convergence rate of LMS algorithm, is constructed. Then we discuss the selection of initial optimal step-size and updating of optimal step-size at the time of unknown system changing. At last an optimal step-size LMS algorithm is proposed and tested in various environments. Simulation results show the proposed algorithm is very close to the theoretical bound.
基金supported by an NSERC Canada Postgraduate Scholarshipsupported by a grant from NSERC Canada
文摘Implicit-explicit (IMEX) linear multistep methods are popular techniques for solving partial differential equations (PDEs) with terms of different types. While fixed timestep versions of such schemes have been developed and studied, implicit-explicit schemes also naturally arise in general situations where the temporal smoothness of the solution changes. In this paper we consider easily implementable variable step-size implicit-explicit (VSIMEX) linear multistep methods for time-dependent PDEs. Families of order-p, pstep VSIMEX schemes are constructed and analyzed, where p ranges from 1 to 4. The corresponding schemes are simple to implement and have the property that they reduce to the classical IMEX schemes whenever constant time step-sizes are imposed. The methods are validated on the Burgers' equation. These results demonstrate that by varying the time step-size, VSIMEX methods can outperform their fixed time step counterparts while still maintaining good numerical behavior.
文摘This paper proposes a robust adaptive filter based on the exponent sin cost to improve the capability against Gaussian or multiple types of non-Gaussian noises of the adaptive filtering algorithm when dealing with time-varying/time-invariant linear systems function exponent sin(ExpSin).Then a variable step-size(VSS)-ExpSin algorithm is extended further.Besides,the stepsize,the convergence,and the steady-state performance of the proposed algorithm are validated experimentally.The Monte Carlo simulation results of linear system identification illustrate the principle and efficiency of this proposed adaptive filtering algorithm.Results suggest that the proposed adaptive filtering algorithm has superior performance when estimating the unknown linear systems under multiple-types measurement noises.
文摘With independence assumption, this paper proposes and proves the superior step-size theorem on least mean square (LMS) algorithm, from the view of minimizing mean squared error (MSE). Following the theorem we construct a parallel variable step-size LMS filters algorithm. The theoretical model of the proposed algorithm is analyzed in detail. Simulations show the proposed theoretical model is quite close to the optimal variable step-size LMS (OVS-LMS) model. The experimental learning curves of the proposed algorithm also show the fastest convergence and fine tracking performance. The proposed algorithm is therefore a good realization of the OVS-LMS model.
基金Supported by the National Natural Science Foundation of China(50437010)the National High Technology Research and Development Program of China("863"Program)(2006AA05Z205)the Project of Six Talented Peak of Jiangsu Province(07-D-013)~~
文摘Aiming at the stability and others properties of active magnetic bearing (AMB) system influenced by the periodic unbalance stimulation synchronous with rotor rotational speed, a new real-time adaptive feed-forward unbalance force compensation scheme is proposed based on variable step-size least mean square(LMS) algorithm as the feed-forward compensation controller. The controller can provide some suitable sinusoidal signals to com- pensate the feedback unbalance response signals synchronous with the rotary frequency, then reduce the fluctua- tion of the control currents and weaken the active control of AMB system. The variable step-size proportional to the rotational frequency is deduced by analyzing the principle of normal LMS algorithm and its deficiency in the application of real-time filtering of AMB system. Experimental results show that the new method can implement real-time unbalance force compensation in a wide frequency band, reduce the effect of unbalance stimulant force on the housing of AMB system, and provide convenience to improve rotational speed.