The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms wit...The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms with a sparse regularization term.In this paper,we propose a variable forgetting factor(VFF)PRLS algorithm with a sparse penalty,e.g.,l_(1)-norm,for sparse identification.To reduce the computation complexity of the proposed algorithm,a fast implementation method based on dichotomous coordinate descent(DCD)algorithm is also derived.Simulation results indicate superior performance of the proposed algorithm.展开更多
To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean s...To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean square(LMS)method,a new logarithmic-sigmoid variable step-size LMS(LG-SVSLMS)was proposed and applied to estimate the direction of arrival(DOA)of orthogonal frequency division multiple access(OFDMA)signals.Based on the proposed LG-SVSLMS,a non-blind DOA estimation system for OFDMA signals was constructed.The proposed LG-SVSLMS adopts a new multi-parameter step-size update function which combines the sigmoid function and the logarithmic function.It controls the adjustment magnitude of step-size during the initial and steady state phases of the LMS method to achieve both a high convergence speed and low steady state maladjustment.Finally,simulation was conducted to verify the performance of the LG-SVSLMS.The simulation results show that the non-blind DOA estimation system based on the LG-SVSLMS can accurately estimate the DOA of the target signal in the scenario where interference signals from multi-source and multi-path fading signals arrive at the third-party devices asynchronously with the target signal,and the estimation deviation is within±3°.The non-blind DOA estimation for OFDMA signals with the proposed LG-SVSLMS is of great significance for the instant positioning technology of mobile terminals based on the adaptive antenna array.展开更多
A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization f...A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization factor(RF) is then employed to control the contribution made by the MD constraint in the cost function. Analysis results show that the RF can be taken as a combination of the step size and regularization parameter in the conventional NLMS. This implies that these parameters can be jointly controlled by simply tuning the RF as the proposed algorithm does. It also demonstrates that the RF can accelerate the convergence rate of the proposed algorithm and its optimal value can be obtained by minimizing the squared noise-free posteriori error. A method for automatically determining the value of the RF is also presented, which is free of any prior knowledge of the noise. While simulation results verify the analytical ones, it is also illustrated that the performance of the proposed algorithm is superior to the state-of-art ones in both the steady-state misalignment and the convergence rate. A novel algorithm is proposed to solve some problems. Simulation results show the effectiveness of the proposed algorithm.展开更多
Variability in soil properties is a critical element across wide areas of researches especially in several aspects of agriculture and environment including sewage disposal and global climate change. Particle size frac...Variability in soil properties is a critical element across wide areas of researches especially in several aspects of agriculture and environment including sewage disposal and global climate change. Particle size fraction (sand, silt, and clay), effective cation exchange capacity, base saturation, pH, organic carbon, total nitrogen, carbon nitrogen ratio, available phosphorus, exchangeable bases (calcium, magnesium, sodium, potassium) and acidity are frequently used in agriculture for soil management. The objective of this study therefore was to identify soil management factors from these set of 15 soil properties and spatial distribution of representative soil management properties. The study was carried out in the University of Uyo Teaching and Research Farm measuring 8.19 hectares in University of Uyo Annex, Uyo in Akwa Ibom State of Nigeria. Nine and ten traverses were made horizontally and vertically respectively at 40 meters intervals. A total of 58 soil samples were collected at 0 - 15 cm depth on the grid nodes of the traverses. Particle size distributions, exchangeable bases and acidity, effective cation exchange capacity (ECEC), available phosphorus (avail. P), base saturation (BS), organic carbon, total nitrogen, carbon nitrogen ratio (CNR) and pH of the samples were determined in the laboratory. Coefficient of variation indicated that 26.6% of the soil properties (sand content, pH, CNR and sodium) were least variable, 40.1% comprising silt, clay contents, ECEC, base saturation, phosphorus and magnesium were moderately. Whereas 33.3% of the soil properties comprising clay content, organic carbon, total nitrogen, exchangeable Ca, K and acidity (i.e.) were highly variable. There were significant correlation (p < 0.05) in 26.6% of the soil properties, the strongest negative significant (p < 0.01) correlations were between sand and clay (r = –0.85), exchangeable acidity and base saturation (r = –0.85), whereas the strongest positive significant correlations were between ECEC and Ca (r = 0.80), Ca and BS (r = 0.74), organic carbon and total nitrogen (r = 0.80). Principal component analysis indicated the existence of six factors including mineralogical or weathering, soil organic matter, cation exchange activity, soil texture, and dispersion and soil phosphorus based on either management or pedological considerations. Semivariance statistics showed that sand and clay contents, ECEC, BS and total N were moderately (≥25.7% ≤47.3%), while silt content, pH, organic carbon, CNR, avail. P, exchangeable Ca, Mg, Na and acidity (≥0.18% ≤22.8%) were strongly spatially dependent. The variability observed was primarily incident upon factors of soil formation. Therefore, the utilization of spatial structure of organic matter and texture factors in the management of nutrient and soil water will facilitate planning of crop production scheme on coastal plain sands soils.展开更多
For a century, hypothesis of a variable time is laid down by the Relativity Theory. This hypothesis can explain many Nature observations, experiments and formulas, for example the Lorentz factor demonstration. Because...For a century, hypothesis of a variable time is laid down by the Relativity Theory. This hypothesis can explain many Nature observations, experiments and formulas, for example the Lorentz factor demonstration. Because of such good explanations, the hypothesis of a variable time has been validated. Nevertheless, it remains some paradoxes and some predictions which are difficult to measure, as a reversible time or the time variation itself. The purpose of this article is to study another hypothesis. If it gives interesting results, it would mean that this alternative hypothesis can also be validated. The idea in this paper is to replace the variable time by a variable inertial mass. To the difference with the Theory of Relativity (where the inertial mass and the gravitational mass are equal and variable), the gravitational mass is here supposed to be constant. So, starting from the definition of the kinetic energy, it is introduced the Lorentz factor. And then it is demonstrated the value of the Lorentz factor thanks to a variable inertial mass. This variable inertial mass can also explain experiments, like Bertozzi experiment. If this alternative demonstration was validated, it could help to open doors, other physical effects could be explained like the addition of velocities.展开更多
Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencie...Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC.展开更多
This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and laten...This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and latent variables,could be used to facilitate researchers’understandings of the underlying constructs or hypothetical factors and their magnitude of effect that constitute a complex system.This enhanced understanding,in turn,can help emphasize the important factors to improve mine safety.The most commonly used techniques include the exploratory factor analysis(EFA),the confirmatory factor analysis(CFA)and the structural equation model with latent variables(SEM).A critical comparison of the three techniques regarding mine safety is provided.Possible applications of latent variable modeling in mining engineering are explored.In this scope,relevant research papers were reviewed.They suggest that the application of such methods could prove useful in mine accident and safety research.Application of latent variables analysis in cognitive work analysis was proposed to improve the understanding of human-work relationships in mining operations.展开更多
Conformal invariance and conserved quantities of a general holonomic system with variable mass are studied. The definition and the determining equation of conformal invariance for a general holonomic system with varia...Conformal invariance and conserved quantities of a general holonomic system with variable mass are studied. The definition and the determining equation of conformal invariance for a general holonomic system with variable mass are provided. The conformal factor expression is deduced from conformal invariance and Lie symmetry. The relationship between the conformal invariance and the Lie symmetry is discussed, and the necessary and sufficient condition under which the conformal invariance would be the Lie symmetry of the system under an infinitesimal oneparameter transformation group is deduced. The conserved quantities of the system are given. An example is given to illustrate the application of the result.展开更多
A modified polarization saturation model is proposed and addressed math- ematically using a complex variable approach in two-dimensional (2D) semipermeable piezoelectric media. In this model, an existing polarizatio...A modified polarization saturation model is proposed and addressed math- ematically using a complex variable approach in two-dimensional (2D) semipermeable piezoelectric media. In this model, an existing polarization saturation (PS) model in 2D piezoelectric media is modified by considering a linearly varying saturated normal electric displacement load in place of a constant normal electric displacement load, applied on a saturated electric zone. A centre cracked infinite 2D piezoelectric domain subject to an arbitrary poling direction and in-plane electromechanical loadings is considered for the analytical and numerical studies. Here, the problem is mathematically modeled as a non-homogeneous Riemann-Hilbert problem in terms of unknown complex potential functions representing electric displacement and stress components. Having solved the Hilbert problem, the solutions to the saturated zone length, the crack opening displace- ment (COD), the crack opening potential (COP), and the local stress intensity factors (SIFs) are obtained in explicit forms. A numerical study is also presented for the proposed modified model, showing the effects of the saturation condition on the applied electrical loading, the saturation zone length, and the COP. The results of fracture parameters obtained from the proposed model are compared with the existing PS model subject to electrical loading, crack face conditions, and polarization angles.展开更多
In this review, single-chain fragment variable construction using phage-display technology as a promising anticancer immunotherapy technology is described. Cloning and the specific bio-panning selection with phage dis...In this review, single-chain fragment variable construction using phage-display technology as a promising anticancer immunotherapy technology is described. Cloning and the specific bio-panning selection with phage display technology, as well as the use of the epidermal growth factor receptor (EGFR) at the surface of MCF-7 cells as the antigen for the straightforward specific selection of single chain Fvs, are discussed. Moreover, phage display technologies and their application are important for vaccine production and immunotherapy against viruses and cancers. Furthermore, expression of the gene will cause the production and expression of the protein in prokaryotic and eukaryotic cells, which can be used to detect anti-cancer single chain fragment variables (scFvs). Finally, homology modelling is described to show the three-dimensional scFv structure that verifies the Complementary-Determining-Regions (CDRs) on the surface of the model.展开更多
The point and the line contacts of a toroidal continuously variable transmission (CVT) are studied. The contact shapes between the roller and input and output disks are formulated by using the classical Hertz contact ...The point and the line contacts of a toroidal continuously variable transmission (CVT) are studied. The contact shapes between the roller and input and output disks are formulated by using the classical Hertz contact theory. Based on the formulated equations, different system factors affecting the maximum Hertz stress in the elliptical and strip contacts of the full toroidal CVT are explored, which include the properties of the contacting material (Young’s modulus), operating condition (pushing load) and geometrical parameters (aspect cavity ratio, aspect roller ratio). The comparative results reveal the relations between the maximum Hertz stress and the speed ratio in the form of graphs. These graphs give useful information for designer to know the maximum Hertz stress during operation in such systems.展开更多
This paper proposes a robust adaptive filter based on the exponent sin cost to improve the capability against Gaussian or multiple types of non-Gaussian noises of the adaptive filtering algorithm when dealing with tim...This paper proposes a robust adaptive filter based on the exponent sin cost to improve the capability against Gaussian or multiple types of non-Gaussian noises of the adaptive filtering algorithm when dealing with time-varying/time-invariant linear systems function exponent sin(ExpSin).Then a variable step-size(VSS)-ExpSin algorithm is extended further.Besides,the stepsize,the convergence,and the steady-state performance of the proposed algorithm are validated experimentally.The Monte Carlo simulation results of linear system identification illustrate the principle and efficiency of this proposed adaptive filtering algorithm.Results suggest that the proposed adaptive filtering algorithm has superior performance when estimating the unknown linear systems under multiple-types measurement noises.展开更多
Following the Pohang and Gyeongju earthquakes and their aftershocks,there is no longer any zone that is safe from earthquake-related disasters in the Korean Peninsula.In order to monitor and predict earthquakes,correl...Following the Pohang and Gyeongju earthquakes and their aftershocks,there is no longer any zone that is safe from earthquake-related disasters in the Korean Peninsula.In order to monitor and predict earthquakes,correlation analysis of earthquakes and hydro-environmental factors are insufficient,and the development and application of hydro-environmental factor measurement equipment is still in the early stages.This study developes and verifies a more precise radon measurement device.Four specific earthquake cases(2019–2020)were selected,and the correlation of the analyses of the earthquakes and hydro-environmental factors(radon,electric conductivity(EC),water-level(WL),and water-temperature(WT))was conducted at the three specific groundwater stations.Accordingly,was confirmed that four factors are affected by earthquakes or seismic movement.Furthermore,the variability of the EC showed an identical tendency for a certain period before an earthquake occurred,and,in particular,the variability trends for radon,WL,and EC coincided at the time of the earthquake′s occurrence.展开更多
Asymmetric three-phase cascading Trinary-DC source Multilevel Inverter which can achieve reduced harmonics and superior root mean square (RMS) values of the output voltage is proposed. This topology can achieve cascad...Asymmetric three-phase cascading Trinary-DC source Multilevel Inverter which can achieve reduced harmonics and superior root mean square (RMS) values of the output voltage is proposed. This topology can achieve cascaded full bridge inverter operation with dissimilar (unequal) DC Source and it is fired by using variable frequency pulse with modulation technique as a switching strategy. This pulse width modulation switching strategy has a newly adopted multicarrier single reference technique. The performance parameter factors like Form Factor (FF), Crest Factor (CF), Total Harmonic Distortion (THD) and fundamental RMS output voltage (V<sub>RMS</sub>) are estimated by using proposed asymmetrical three-phase cascading multilevel inverter for several modulation indices (0.8 - 1). The research study carries with MATLAB/SIMULINK based simulation and experimental results obtained using appropriate prototype (test board) to prove the viability of the proposed concept.展开更多
As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to intr...As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to introduce a new rock skeleton parameter which is the dry-rock VP/VS ratio squared(DVRS).In the process of fluid factor calculation or inversion,the existing methods take this parameter as a static constant,which has been estimated in advance,and then apply it to the fluid factor calculation and inversion.The fluid identification analysis based on a portion of the Marmousi 2 model and numerical forward modeling test show that,taking the DVRS as a static constant will limit the identification ability of fluid factor and reduce the inversion accuracy.To solve the above problems,we proposed a new method to regard the DVRS as a dynamic variable varying with depth and lithology for the first time,then apply it to fluid factor calculation and inversion.Firstly,the exact Zoeppritz equations are rewritten into a new form containing the fluid factor and DVRS of upper and lower layers.Next,the new equations are applied to the four parameters simultaneous inversion based on the generalized nonlinear inversion(GNI)method.The testing results on a portion of the Marmousi 2 model and field data show that dynamic DVRS can significantly improve the fluid factor identification ability,effectively suppress illusion.Both synthetic and filed data tests also demonstrate that the GNI method based on Bayesian deterministic inversion(BDI)theory can successfully solve the above four parameter simultaneous inversion problem,and taking the dynamic DVRS as a target inversion parameter can effectively improve the inversion accuracy of fluid factor.All these results completely verified the feasibility and effectiveness of the proposed method.展开更多
As an effort to understand the effect of diabetes on the increasing rate of COVID-19 infection, we embarked upon a detailed statistical analysis of various datasets that include COVID-19 infection and mortality rate, ...As an effort to understand the effect of diabetes on the increasing rate of COVID-19 infection, we embarked upon a detailed statistical analysis of various datasets that include COVID-19 infection and mortality rate, diabetes and diseases that may contribute to the severity and risk factor of diabetes in individuals and this impact on COVID-19 and the mortality rate. These diseases include respiratory diseases, cardiovascular diseases, and obesity. Equally significant is the statistical analysis on ethnicity, age, and sex on COVID-19 infection as well as mortality rate. Their possible contributions to increasing the severity and risk factor of diabetes as a risk to mortality to individuals who have COVID-19. Objectives: The ultimate objectives of this investigation are as follow: 1) Is there a risk factor of diabetes on COVID-19 infection and increasing mortality rate? 2) To what extent do other disease conditions that include, obesity, heart failure, and respiratory diseases influence the severity and risk factor of diabetes on increasing COVID-19 infection and mortality rate? 3) To what extent does age, race, and gender increase the mortality of COVID-19 and increase the severity and risk factor of diabetes on COVID-19 mortality rate? 4) How and why COVID-19 virus increases the risk of diabetes in children? 5) Diabetes and COVID-19: Who is most at Risk? Lastly, understanding the misconception of COVID-19 and diabetes.展开更多
基金supported by National Key Research and Development Program of China(2020YFB0505803)National Key Research and Development Program of China(2016YFB0501700)。
文摘The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms with a sparse regularization term.In this paper,we propose a variable forgetting factor(VFF)PRLS algorithm with a sparse penalty,e.g.,l_(1)-norm,for sparse identification.To reduce the computation complexity of the proposed algorithm,a fast implementation method based on dichotomous coordinate descent(DCD)algorithm is also derived.Simulation results indicate superior performance of the proposed algorithm.
基金The Social Development Projects of Jiangsu Science and Technology Department(No.BE2018704)the Technological Innovation Projects of Ministry of Public Security of China(No.20170001)。
文摘To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean square(LMS)method,a new logarithmic-sigmoid variable step-size LMS(LG-SVSLMS)was proposed and applied to estimate the direction of arrival(DOA)of orthogonal frequency division multiple access(OFDMA)signals.Based on the proposed LG-SVSLMS,a non-blind DOA estimation system for OFDMA signals was constructed.The proposed LG-SVSLMS adopts a new multi-parameter step-size update function which combines the sigmoid function and the logarithmic function.It controls the adjustment magnitude of step-size during the initial and steady state phases of the LMS method to achieve both a high convergence speed and low steady state maladjustment.Finally,simulation was conducted to verify the performance of the LG-SVSLMS.The simulation results show that the non-blind DOA estimation system based on the LG-SVSLMS can accurately estimate the DOA of the target signal in the scenario where interference signals from multi-source and multi-path fading signals arrive at the third-party devices asynchronously with the target signal,and the estimation deviation is within±3°.The non-blind DOA estimation for OFDMA signals with the proposed LG-SVSLMS is of great significance for the instant positioning technology of mobile terminals based on the adaptive antenna array.
基金supported by the National Natural Science Foundation of China(61571131 11604055)
文摘A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization factor(RF) is then employed to control the contribution made by the MD constraint in the cost function. Analysis results show that the RF can be taken as a combination of the step size and regularization parameter in the conventional NLMS. This implies that these parameters can be jointly controlled by simply tuning the RF as the proposed algorithm does. It also demonstrates that the RF can accelerate the convergence rate of the proposed algorithm and its optimal value can be obtained by minimizing the squared noise-free posteriori error. A method for automatically determining the value of the RF is also presented, which is free of any prior knowledge of the noise. While simulation results verify the analytical ones, it is also illustrated that the performance of the proposed algorithm is superior to the state-of-art ones in both the steady-state misalignment and the convergence rate. A novel algorithm is proposed to solve some problems. Simulation results show the effectiveness of the proposed algorithm.
文摘Variability in soil properties is a critical element across wide areas of researches especially in several aspects of agriculture and environment including sewage disposal and global climate change. Particle size fraction (sand, silt, and clay), effective cation exchange capacity, base saturation, pH, organic carbon, total nitrogen, carbon nitrogen ratio, available phosphorus, exchangeable bases (calcium, magnesium, sodium, potassium) and acidity are frequently used in agriculture for soil management. The objective of this study therefore was to identify soil management factors from these set of 15 soil properties and spatial distribution of representative soil management properties. The study was carried out in the University of Uyo Teaching and Research Farm measuring 8.19 hectares in University of Uyo Annex, Uyo in Akwa Ibom State of Nigeria. Nine and ten traverses were made horizontally and vertically respectively at 40 meters intervals. A total of 58 soil samples were collected at 0 - 15 cm depth on the grid nodes of the traverses. Particle size distributions, exchangeable bases and acidity, effective cation exchange capacity (ECEC), available phosphorus (avail. P), base saturation (BS), organic carbon, total nitrogen, carbon nitrogen ratio (CNR) and pH of the samples were determined in the laboratory. Coefficient of variation indicated that 26.6% of the soil properties (sand content, pH, CNR and sodium) were least variable, 40.1% comprising silt, clay contents, ECEC, base saturation, phosphorus and magnesium were moderately. Whereas 33.3% of the soil properties comprising clay content, organic carbon, total nitrogen, exchangeable Ca, K and acidity (i.e.) were highly variable. There were significant correlation (p < 0.05) in 26.6% of the soil properties, the strongest negative significant (p < 0.01) correlations were between sand and clay (r = –0.85), exchangeable acidity and base saturation (r = –0.85), whereas the strongest positive significant correlations were between ECEC and Ca (r = 0.80), Ca and BS (r = 0.74), organic carbon and total nitrogen (r = 0.80). Principal component analysis indicated the existence of six factors including mineralogical or weathering, soil organic matter, cation exchange activity, soil texture, and dispersion and soil phosphorus based on either management or pedological considerations. Semivariance statistics showed that sand and clay contents, ECEC, BS and total N were moderately (≥25.7% ≤47.3%), while silt content, pH, organic carbon, CNR, avail. P, exchangeable Ca, Mg, Na and acidity (≥0.18% ≤22.8%) were strongly spatially dependent. The variability observed was primarily incident upon factors of soil formation. Therefore, the utilization of spatial structure of organic matter and texture factors in the management of nutrient and soil water will facilitate planning of crop production scheme on coastal plain sands soils.
文摘For a century, hypothesis of a variable time is laid down by the Relativity Theory. This hypothesis can explain many Nature observations, experiments and formulas, for example the Lorentz factor demonstration. Because of such good explanations, the hypothesis of a variable time has been validated. Nevertheless, it remains some paradoxes and some predictions which are difficult to measure, as a reversible time or the time variation itself. The purpose of this article is to study another hypothesis. If it gives interesting results, it would mean that this alternative hypothesis can also be validated. The idea in this paper is to replace the variable time by a variable inertial mass. To the difference with the Theory of Relativity (where the inertial mass and the gravitational mass are equal and variable), the gravitational mass is here supposed to be constant. So, starting from the definition of the kinetic energy, it is introduced the Lorentz factor. And then it is demonstrated the value of the Lorentz factor thanks to a variable inertial mass. This variable inertial mass can also explain experiments, like Bertozzi experiment. If this alternative demonstration was validated, it could help to open doors, other physical effects could be explained like the addition of velocities.
基金supported by the National Natural Science Foundation of China(7177121671701209)
文摘Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC.
基金Natural Sciences and Engineering Research Council of Canada(NSERC)(ID:236482)for supporting this research
文摘This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and latent variables,could be used to facilitate researchers’understandings of the underlying constructs or hypothetical factors and their magnitude of effect that constitute a complex system.This enhanced understanding,in turn,can help emphasize the important factors to improve mine safety.The most commonly used techniques include the exploratory factor analysis(EFA),the confirmatory factor analysis(CFA)and the structural equation model with latent variables(SEM).A critical comparison of the three techniques regarding mine safety is provided.Possible applications of latent variable modeling in mining engineering are explored.In this scope,relevant research papers were reviewed.They suggest that the application of such methods could prove useful in mine accident and safety research.Application of latent variables analysis in cognitive work analysis was proposed to improve the understanding of human-work relationships in mining operations.
基金Project supported by the Key Disciplines’ Building Foundation of Henan Institute of Educationthe Natural Science Foundation of Education Bureau of Henan Province,China (Grant No. 2009A140003)the Young Core Instructor from Henan Institute of Education
文摘Conformal invariance and conserved quantities of a general holonomic system with variable mass are studied. The definition and the determining equation of conformal invariance for a general holonomic system with variable mass are provided. The conformal factor expression is deduced from conformal invariance and Lie symmetry. The relationship between the conformal invariance and the Lie symmetry is discussed, and the necessary and sufficient condition under which the conformal invariance would be the Lie symmetry of the system under an infinitesimal oneparameter transformation group is deduced. The conserved quantities of the system are given. An example is given to illustrate the application of the result.
文摘A modified polarization saturation model is proposed and addressed math- ematically using a complex variable approach in two-dimensional (2D) semipermeable piezoelectric media. In this model, an existing polarization saturation (PS) model in 2D piezoelectric media is modified by considering a linearly varying saturated normal electric displacement load in place of a constant normal electric displacement load, applied on a saturated electric zone. A centre cracked infinite 2D piezoelectric domain subject to an arbitrary poling direction and in-plane electromechanical loadings is considered for the analytical and numerical studies. Here, the problem is mathematically modeled as a non-homogeneous Riemann-Hilbert problem in terms of unknown complex potential functions representing electric displacement and stress components. Having solved the Hilbert problem, the solutions to the saturated zone length, the crack opening displace- ment (COD), the crack opening potential (COP), and the local stress intensity factors (SIFs) are obtained in explicit forms. A numerical study is also presented for the proposed modified model, showing the effects of the saturation condition on the applied electrical loading, the saturation zone length, and the COP. The results of fracture parameters obtained from the proposed model are compared with the existing PS model subject to electrical loading, crack face conditions, and polarization angles.
文摘In this review, single-chain fragment variable construction using phage-display technology as a promising anticancer immunotherapy technology is described. Cloning and the specific bio-panning selection with phage display technology, as well as the use of the epidermal growth factor receptor (EGFR) at the surface of MCF-7 cells as the antigen for the straightforward specific selection of single chain Fvs, are discussed. Moreover, phage display technologies and their application are important for vaccine production and immunotherapy against viruses and cancers. Furthermore, expression of the gene will cause the production and expression of the protein in prokaryotic and eukaryotic cells, which can be used to detect anti-cancer single chain fragment variables (scFvs). Finally, homology modelling is described to show the three-dimensional scFv structure that verifies the Complementary-Determining-Regions (CDRs) on the surface of the model.
基金Funded by the Ford-NSFC Foundation of China (No.50122151).
文摘The point and the line contacts of a toroidal continuously variable transmission (CVT) are studied. The contact shapes between the roller and input and output disks are formulated by using the classical Hertz contact theory. Based on the formulated equations, different system factors affecting the maximum Hertz stress in the elliptical and strip contacts of the full toroidal CVT are explored, which include the properties of the contacting material (Young’s modulus), operating condition (pushing load) and geometrical parameters (aspect cavity ratio, aspect roller ratio). The comparative results reveal the relations between the maximum Hertz stress and the speed ratio in the form of graphs. These graphs give useful information for designer to know the maximum Hertz stress during operation in such systems.
文摘This paper proposes a robust adaptive filter based on the exponent sin cost to improve the capability against Gaussian or multiple types of non-Gaussian noises of the adaptive filtering algorithm when dealing with time-varying/time-invariant linear systems function exponent sin(ExpSin).Then a variable step-size(VSS)-ExpSin algorithm is extended further.Besides,the stepsize,the convergence,and the steady-state performance of the proposed algorithm are validated experimentally.The Monte Carlo simulation results of linear system identification illustrate the principle and efficiency of this proposed adaptive filtering algorithm.Results suggest that the proposed adaptive filtering algorithm has superior performance when estimating the unknown linear systems under multiple-types measurement noises.
基金National Research Foundation of Korea(NRF)Grant by the Korea Government(MSIT)under Grant No.NRF-2021R1A2C1004790。
文摘Following the Pohang and Gyeongju earthquakes and their aftershocks,there is no longer any zone that is safe from earthquake-related disasters in the Korean Peninsula.In order to monitor and predict earthquakes,correlation analysis of earthquakes and hydro-environmental factors are insufficient,and the development and application of hydro-environmental factor measurement equipment is still in the early stages.This study developes and verifies a more precise radon measurement device.Four specific earthquake cases(2019–2020)were selected,and the correlation of the analyses of the earthquakes and hydro-environmental factors(radon,electric conductivity(EC),water-level(WL),and water-temperature(WT))was conducted at the three specific groundwater stations.Accordingly,was confirmed that four factors are affected by earthquakes or seismic movement.Furthermore,the variability of the EC showed an identical tendency for a certain period before an earthquake occurred,and,in particular,the variability trends for radon,WL,and EC coincided at the time of the earthquake′s occurrence.
文摘Asymmetric three-phase cascading Trinary-DC source Multilevel Inverter which can achieve reduced harmonics and superior root mean square (RMS) values of the output voltage is proposed. This topology can achieve cascaded full bridge inverter operation with dissimilar (unequal) DC Source and it is fired by using variable frequency pulse with modulation technique as a switching strategy. This pulse width modulation switching strategy has a newly adopted multicarrier single reference technique. The performance parameter factors like Form Factor (FF), Crest Factor (CF), Total Harmonic Distortion (THD) and fundamental RMS output voltage (V<sub>RMS</sub>) are estimated by using proposed asymmetrical three-phase cascading multilevel inverter for several modulation indices (0.8 - 1). The research study carries with MATLAB/SIMULINK based simulation and experimental results obtained using appropriate prototype (test board) to prove the viability of the proposed concept.
基金the National Natural Science Foundation of China(41904116,41874156,42074167 and 42204135)the Natural Science Foundation of Hunan Province(2020JJ5168)the China Postdoctoral Science Foundation(2021M703629)for their funding of this research.
文摘As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to introduce a new rock skeleton parameter which is the dry-rock VP/VS ratio squared(DVRS).In the process of fluid factor calculation or inversion,the existing methods take this parameter as a static constant,which has been estimated in advance,and then apply it to the fluid factor calculation and inversion.The fluid identification analysis based on a portion of the Marmousi 2 model and numerical forward modeling test show that,taking the DVRS as a static constant will limit the identification ability of fluid factor and reduce the inversion accuracy.To solve the above problems,we proposed a new method to regard the DVRS as a dynamic variable varying with depth and lithology for the first time,then apply it to fluid factor calculation and inversion.Firstly,the exact Zoeppritz equations are rewritten into a new form containing the fluid factor and DVRS of upper and lower layers.Next,the new equations are applied to the four parameters simultaneous inversion based on the generalized nonlinear inversion(GNI)method.The testing results on a portion of the Marmousi 2 model and field data show that dynamic DVRS can significantly improve the fluid factor identification ability,effectively suppress illusion.Both synthetic and filed data tests also demonstrate that the GNI method based on Bayesian deterministic inversion(BDI)theory can successfully solve the above four parameter simultaneous inversion problem,and taking the dynamic DVRS as a target inversion parameter can effectively improve the inversion accuracy of fluid factor.All these results completely verified the feasibility and effectiveness of the proposed method.
文摘As an effort to understand the effect of diabetes on the increasing rate of COVID-19 infection, we embarked upon a detailed statistical analysis of various datasets that include COVID-19 infection and mortality rate, diabetes and diseases that may contribute to the severity and risk factor of diabetes in individuals and this impact on COVID-19 and the mortality rate. These diseases include respiratory diseases, cardiovascular diseases, and obesity. Equally significant is the statistical analysis on ethnicity, age, and sex on COVID-19 infection as well as mortality rate. Their possible contributions to increasing the severity and risk factor of diabetes as a risk to mortality to individuals who have COVID-19. Objectives: The ultimate objectives of this investigation are as follow: 1) Is there a risk factor of diabetes on COVID-19 infection and increasing mortality rate? 2) To what extent do other disease conditions that include, obesity, heart failure, and respiratory diseases influence the severity and risk factor of diabetes on increasing COVID-19 infection and mortality rate? 3) To what extent does age, race, and gender increase the mortality of COVID-19 and increase the severity and risk factor of diabetes on COVID-19 mortality rate? 4) How and why COVID-19 virus increases the risk of diabetes in children? 5) Diabetes and COVID-19: Who is most at Risk? Lastly, understanding the misconception of COVID-19 and diabetes.