期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Class of Distributed Variable Structure Multiple Model Algorithm Based on Posterior Information of Information Matrix
1
作者 HUANG Yinghao WU Yi +1 位作者 YAO Lixiu CAI Yunze 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第5期671-679,共9页
The tracking of maneuvering targets in radar networking scenarios is studied in this paper.For the interacting multiple model algorithm and the expected-mode augmentation algorithm,the fixed base model set leads to a ... The tracking of maneuvering targets in radar networking scenarios is studied in this paper.For the interacting multiple model algorithm and the expected-mode augmentation algorithm,the fixed base model set leads to a mismatch between the model set and the target motion mode,which causes the reduction on tracking accuracy.An adaptive grid-expected-mode augmentation variable structure multiple model algorithm is proposed.The adaptive grid algorithm based on the turning model is extended to the two-dimensional pattern space to realize the self-adaptation of the model set.Furthermore,combining with the unscented information filtering,and by interacting the measurement information of neighboring radars and iterating information matrix with consistency strategy,a distributed target tracking algorithm based on the posterior information of the information matrix is proposed.For the problem of filtering divergence while target is leaving radar surveillance area,a k-coverage algorithm based on particle swarm optimization is applied to plan the radar motion trajectory for achieving filtering convergence. 展开更多
关键词 radar network system variable structure multiple model consistency filtering information matrix particle swarm optimization
原文传递
An Algorithm of the Adaptive Grid and Fuzzy Interacting Multiple Model 被引量:3
2
作者 Yuan Zhang Chen Guo +2 位作者 Hai Hu Shubo Liu Junbo Chu 《Journal of Marine Science and Application》 2014年第3期340-345,共6页
This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algo... This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algorithm's cost-efficiency ratio being not high and the Markov transition probability of the interacting multiple model (IMM) algorithm being difficult to determine exactly. This algorithm realizes the adaptive model set by adaptive grid adjustment, and obtains each model matching degree in the model set by fuzzy logic inference. The simulation results show that the AGFIMM algorithm can effectively improve the accuracy and cost-efficiency ratio of the multiple model algorithm, and as a result is suitable for enineering apolications. 展开更多
关键词 maneuvering target tracking adaptive grid fuzzy logicinference variable structure multiple model adaptive grid andfuzzy interacting multiple model (AGFIMM) interacting multiplemodel (IMM)
下载PDF
Application of Road Information in Ground Moving Target Tracking 被引量:3
3
作者 Zhen Xinyan Zhao Wei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第6期529-538,共10页
A new algorithm is developed to achieve accurate state estimation in ground moving target tracking by means of using road information. It is an adaptive variable structure interacting multiple model estimator with dyn... A new algorithm is developed to achieve accurate state estimation in ground moving target tracking by means of using road information. It is an adaptive variable structure interacting multiple model estimator with dynamic models modification (DMM VS-IMM for short). Firstly, road information is employed to modify the target dynamic models used by filter, including modification of state transition matrix and process noise. Secondly, road information is applied to update the model set of a VS-IMM estimator. Predicted state estimation and road information are used to locate the target in the road network on which the model set is updated and finally IMM filtering is implemented. As compared with traditional methods, the accuracy of state estimation is improved for target moving not only on a single road, but also through an intersection. Monte Carlo simulation demonstrates the efficiency and robustness of the proposed algorithm with moderate computational loads. 展开更多
关键词 ground moving target tracking state estimation road information models modification variable structure interacting multiple model (VS-IMM)
下载PDF
Ground Moving Target Tracking with VS-IMM Using Mean Shift Unscented Particle Filter 被引量:12
4
作者 GAO Caicai CHEN Wei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第5期622-630,共9页
In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sampl... In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain. 展开更多
关键词 ground moving target tracking mean shift unscented particle filter hide model road information variable structure interacting multiple model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部