A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigate...A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.展开更多
In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit ...In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients.展开更多
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann the...In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.展开更多
By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized co...By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized coherent soliton excitations like dromions, lumps, rings, breathers, instantons, oscillating soliton excitations, peakons, foldons, and previously revealed chaotic and fractal localized solutions, some new types of excitations — compacton and Jacobi periodic wave solutions are obtained by introducing appropriate lower dimensional piecewise smooth functions and Jacobi elliptic functions.展开更多
In this paper it has been systematically studied the imbedding properties o f fractional integral operators of periodic functions of several variables,and isomorphic properties of fractional intregral operators in the...In this paper it has been systematically studied the imbedding properties o f fractional integral operators of periodic functions of several variables,and isomorphic properties of fractional intregral operators in the spaces of Lipschitz continuous functions. It has also been proved that the space of fractional integration,the space of Lipschitz continuous functions and the Sobolev space are identical in L^2-norm.Results obtainedhere are not true for fractional integrals(or Riesz potentials)in R^n.展开更多
The Gardner equation with a variable-coefficient from fluid dynamics and plasma physics is investigated. Different kinds of solutions including breather-type soliton and two soliton solutions are obtained using biline...The Gardner equation with a variable-coefficient from fluid dynamics and plasma physics is investigated. Different kinds of solutions including breather-type soliton and two soliton solutions are obtained using bilinear method and extended homoclinic test approach. The proposed method can also be applied to solve other types of higher dimensional integrable and non-integrable systems.展开更多
An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Rad...An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Radial basis function neural network and Fourier series expansion (FSE) are combined into a new function approximator to model each suitable disturbed function in systems. The requirement of the traditional iterative learning control algorithm on the nonlinear functions (such as global Lipschitz condition) is relaxed. Furthermore, by using appropriate Lyapunov-Krasovskii functionals, all signs in the closed loop system are guaranteed to be semiglobally uniformly ultimately bounded, and the output of the system is proved to converge to the desired trajectory. A simulation example is provided to illustrate the effectiveness of the control scheme.展开更多
This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A ge...This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker-Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time T on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears.展开更多
To study the approximation theory of real sliding mode and the design of variable structure controller for time-invariant linear uncertain time-delay singular system,the approximation theory of real sliding mode was d...To study the approximation theory of real sliding mode and the design of variable structure controller for time-invariant linear uncertain time-delay singular system,the approximation theory of real sliding mode was developed to provide foundation for obtaining sliding mode by equivalent control,and switching functions with integral dynamic compensators and variable structure controllers were designed respectively under two circumstances that the system without uncertain part was stabilized by delay-dependent and delay-independent linear state feedback. The design guarantees the asymptotical stablity of switching manifolds,and the variable structure controllers can force solution trajectory of the system to arrive at the switching manifolds in limited time. A numerical example is given to demonstrate the feasibility and simplicity of the design method.展开更多
This paper proposes a novel method for incorporating wave domain prediction in a three-channel(3CH)architecture,which is the optimal architecture from a transparency point of view,to overcome the poor transparency pro...This paper proposes a novel method for incorporating wave domain prediction in a three-channel(3CH)architecture,which is the optimal architecture from a transparency point of view,to overcome the poor transparency problem of using the wave variable method in a time-delay teleoperation system.A 3CH teleoperation control architecture is established by selecting parameters of the 4CH architecture sensibly for the system without force sensor in the master side.The communication channel is divided into a two-port model by combining force and velocity information reasonably to extend the wave variable method to a 3CH architecture.Then the I/O signal of the two-port model is transformed into wave variable.A predictor is added to the wave domain of the master side to further improve the transparency of the system,and a regulator is designed to ensure the passivity of the predictor.Experimental results show that the proposed method can guarantee stability and improve the transparency of the teleoperation system with time-delay.展开更多
We study a nonlinear periodic problem driven by the p(t)-Laplacian and having a nonsmooth potential (hemivariational inequalities). Using a variational method based on nonsmooth critical point theory for locally L...We study a nonlinear periodic problem driven by the p(t)-Laplacian and having a nonsmooth potential (hemivariational inequalities). Using a variational method based on nonsmooth critical point theory for locally Lipschitz functions, we first prove the existence of at least two nontrivial solutions under the generalized subquadratic and then establish the existence of at least one nontrivial solution under the generalized superquadratic.展开更多
A quite general coupled variable coefficient modified KdV (VCmKdV) equation in a two-layer fluid systemis derived by means of the reductive perturbation method.Making use of the CK's direct method,some similarityr...A quite general coupled variable coefficient modified KdV (VCmKdV) equation in a two-layer fluid systemis derived by means of the reductive perturbation method.Making use of the CK's direct method,some similarityreductions of the coupled VCmKdV equation are obtained and their corresponding group explanations are discussed.Some exact solutions of the coupled equations are also presented.展开更多
By means of sn-function expansion method and cn-function expansion method, several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained, which include three sets of periodic...By means of sn-function expansion method and cn-function expansion method, several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained, which include three sets of periodic wave-like solutions. These solutions degenerate to solitary wave-like solutions at a certain limit. Some new solutions are presented.展开更多
The linear variable separation approach is successfully extended to(1+1)-dimensional Korteweg-de Vries (KdV) type models related to Schrodinger system. Somesignificant types of solitons such as compaction, peakon, and...The linear variable separation approach is successfully extended to(1+1)-dimensional Korteweg-de Vries (KdV) type models related to Schrodinger system. Somesignificant types of solitons such as compaction, peakon, and loop solutions with periodic behaviorare simultaneously derived from the (l+l)-dimensional soliton system by entrancing appropriatepiecewise smooth functions and multivalued functions.展开更多
Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+ 1)-dimensional Maccari system. By introducing Jacobi elliptic functions dn and nd ...Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+ 1)-dimensional Maccari system. By introducing Jacobi elliptic functions dn and nd in the seed solution, two types of doubly periodic propagating wave patterns are derived. We invest/gate the wave patterns evolution along with the modulus k increasing, many important and interesting properties are revealed.展开更多
Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+1)-dimensional breaking soliton system. By introducing Jacobi elliptic functions in...Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+1)-dimensional breaking soliton system. By introducing Jacobi elliptic functions in the seed solution, two families of doubly periodic propagating wave patterns are derived. We investigate these periodic wave solutions with different modulus m selections, many important and interesting properties are revealed. The interaction of Jabcobi elliptic function waves are graphically considered and found to be nonelastic.展开更多
In the paper, the variable separation approach, homoclinic test technique and bilinear method are successfullyextended to a (1+1)-dimensional Caudry-Dodd-Gibbon-Sawada-Kortera (CDGSK) system, respectively.Basedon the ...In the paper, the variable separation approach, homoclinic test technique and bilinear method are successfullyextended to a (1+1)-dimensional Caudry-Dodd-Gibbon-Sawada-Kortera (CDGSK) system, respectively.Basedon the derived exact solutions, some significant types of localized excitations such as standing waves, periodic waves,solitary waves are simultaneously derived from the (1+1)-dimensional Caudry-Dodd-Gibbon-Sawada-Kortera systemby entrancing appropriate parameters.展开更多
A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contain...A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.展开更多
Temperature dependent viscosity and thermal conducting heat and mass transfer flow with chemical reaction and periodic magnetic field past an isothermal oscillating cylinder have been considered. The partial dimension...Temperature dependent viscosity and thermal conducting heat and mass transfer flow with chemical reaction and periodic magnetic field past an isothermal oscillating cylinder have been considered. The partial dimensionless equations governing the flow have been solved numerically by applying explicit finite difference method with the help Compaq visual 6.6a. The obtained outcome of this inquisition has been discussed for different values of well-known flow parameters with different time steps and oscillation angle. The effect of chemical reaction and periodic MHD parameters on the velocity field, temperature field and concentration field, skin-friction, Nusselt number and Sherwood number have been studied and results are presented by graphically. The novelty of the present problem is to study the streamlines by taking into account periodic magnetic field.展开更多
文摘A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.
基金The project supported by the Natural Science Foundation of Shandong Province under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10771196 and 10831003)the Innovation Project of Zhejiang Province of China(Grant No.T200905)
文摘In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.
基金The project supported by National Natural Science Foundation of China under Grant No.10172056+2 种基金the Natural Science Foundation of Zhengjiang Provincethe Foundation of Zhengjiang Lishui College under Grant Nos.KZ03009 and KZ03005
文摘By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized coherent soliton excitations like dromions, lumps, rings, breathers, instantons, oscillating soliton excitations, peakons, foldons, and previously revealed chaotic and fractal localized solutions, some new types of excitations — compacton and Jacobi periodic wave solutions are obtained by introducing appropriate lower dimensional piecewise smooth functions and Jacobi elliptic functions.
文摘In this paper it has been systematically studied the imbedding properties o f fractional integral operators of periodic functions of several variables,and isomorphic properties of fractional intregral operators in the spaces of Lipschitz continuous functions. It has also been proved that the space of fractional integration,the space of Lipschitz continuous functions and the Sobolev space are identical in L^2-norm.Results obtainedhere are not true for fractional integrals(or Riesz potentials)in R^n.
文摘The Gardner equation with a variable-coefficient from fluid dynamics and plasma physics is investigated. Different kinds of solutions including breather-type soliton and two soliton solutions are obtained using bilinear method and extended homoclinic test approach. The proposed method can also be applied to solve other types of higher dimensional integrable and non-integrable systems.
基金supported by National Natural Science Foundation of China (No. 72103676)partially supported by the Fundamental Research Funds for the Central Universities
文摘An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Radial basis function neural network and Fourier series expansion (FSE) are combined into a new function approximator to model each suitable disturbed function in systems. The requirement of the traditional iterative learning control algorithm on the nonlinear functions (such as global Lipschitz condition) is relaxed. Furthermore, by using appropriate Lyapunov-Krasovskii functionals, all signs in the closed loop system are guaranteed to be semiglobally uniformly ultimately bounded, and the output of the system is proved to converge to the desired trajectory. A simulation example is provided to illustrate the effectiveness of the control scheme.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10872165 and 10902085)
文摘This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker-Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time T on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears.
基金Sponsored by the National Natural Science Foundation of China (Grant No.60574005)Natural Science Foundation of Qingdao(Grant No.04-2-Jz-98)
文摘To study the approximation theory of real sliding mode and the design of variable structure controller for time-invariant linear uncertain time-delay singular system,the approximation theory of real sliding mode was developed to provide foundation for obtaining sliding mode by equivalent control,and switching functions with integral dynamic compensators and variable structure controllers were designed respectively under two circumstances that the system without uncertain part was stabilized by delay-dependent and delay-independent linear state feedback. The design guarantees the asymptotical stablity of switching manifolds,and the variable structure controllers can force solution trajectory of the system to arrive at the switching manifolds in limited time. A numerical example is given to demonstrate the feasibility and simplicity of the design method.
基金Supported by the National High Technology Research and Development Programme of China(No.2006AA04Z245)the Basic Research Universities Special Fund Operations(No.JUSRP11127)
文摘This paper proposes a novel method for incorporating wave domain prediction in a three-channel(3CH)architecture,which is the optimal architecture from a transparency point of view,to overcome the poor transparency problem of using the wave variable method in a time-delay teleoperation system.A 3CH teleoperation control architecture is established by selecting parameters of the 4CH architecture sensibly for the system without force sensor in the master side.The communication channel is divided into a two-port model by combining force and velocity information reasonably to extend the wave variable method to a 3CH architecture.Then the I/O signal of the two-port model is transformed into wave variable.A predictor is added to the wave domain of the master side to further improve the transparency of the system,and a regulator is designed to ensure the passivity of the predictor.Experimental results show that the proposed method can guarantee stability and improve the transparency of the teleoperation system with time-delay.
基金supported by the National Science Foundation of China (11001063, 10971043)the Fundamental Research Funds for the Central Universities (HEUCF 20111134)+2 种基金China Postdoctoral Science Foundation Funded Project (20110491032)Heilongjiang Provincial Science Foundation for Distinguished Young Scholars (JC200810)Program of Excellent Team in Harbin Institute of Technology and the Natural Science Foundation of Heilongjiang Province (A200803)
文摘We study a nonlinear periodic problem driven by the p(t)-Laplacian and having a nonsmooth potential (hemivariational inequalities). Using a variational method based on nonsmooth critical point theory for locally Lipschitz functions, we first prove the existence of at least two nontrivial solutions under the generalized subquadratic and then establish the existence of at least one nontrivial solution under the generalized superquadratic.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10547124,10475055,and 90503006the Youth Foundation of Shanghai Jiao Tong University
文摘A quite general coupled variable coefficient modified KdV (VCmKdV) equation in a two-layer fluid systemis derived by means of the reductive perturbation method.Making use of the CK's direct method,some similarityreductions of the coupled VCmKdV equation are obtained and their corresponding group explanations are discussed.Some exact solutions of the coupled equations are also presented.
文摘By means of sn-function expansion method and cn-function expansion method, several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained, which include three sets of periodic wave-like solutions. These solutions degenerate to solitary wave-like solutions at a certain limit. Some new solutions are presented.
基金The project supported by National Natural Science Foundation of China under Grant No. 10172056, and the Natural Science Foundation of Zhejiang Province of China under Grant No. Y604106 and the Natural Science Foundation of Zhejiang Lishui University unde
文摘The linear variable separation approach is successfully extended to(1+1)-dimensional Korteweg-de Vries (KdV) type models related to Schrodinger system. Somesignificant types of solitons such as compaction, peakon, and loop solutions with periodic behaviorare simultaneously derived from the (l+l)-dimensional soliton system by entrancing appropriatepiecewise smooth functions and multivalued functions.
基金The project supported by the National Natural Science Foundation of China under Grant No. 10272071, the Natural Science Foundation of Zhejiang Province of China under Grant No. Y504111, and the Science Research Foundation of Huzhou University
文摘Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+ 1)-dimensional Maccari system. By introducing Jacobi elliptic functions dn and nd in the seed solution, two types of doubly periodic propagating wave patterns are derived. We invest/gate the wave patterns evolution along with the modulus k increasing, many important and interesting properties are revealed.
基金National Natural Science Foundation of China under Grant No.10272071the Natural Science Foundation of Zhejiang Province under Grant No.Y504111the Scientific Research Foundation of Huzhou University
文摘Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+1)-dimensional breaking soliton system. By introducing Jacobi elliptic functions in the seed solution, two families of doubly periodic propagating wave patterns are derived. We investigate these periodic wave solutions with different modulus m selections, many important and interesting properties are revealed. The interaction of Jabcobi elliptic function waves are graphically considered and found to be nonelastic.
基金Supported the Natural Science Foundation of Guangdong Province of China under Grant No.10151200501000008 the Special Foundation of Talent Engineering of Guangdong Province+2 种基金the Scientific Research Foundation of Key Discipline of Guangdong Shaoguan University under Grant No.KZ2009001the Natural Science Foundation of Zhejiang Province of China under Grant Nos.Y604106 and Y606181the Foundation of New Century "151 Talent Engineering" of Zhejiang Province
文摘In the paper, the variable separation approach, homoclinic test technique and bilinear method are successfullyextended to a (1+1)-dimensional Caudry-Dodd-Gibbon-Sawada-Kortera (CDGSK) system, respectively.Basedon the derived exact solutions, some significant types of localized excitations such as standing waves, periodic waves,solitary waves are simultaneously derived from the (1+1)-dimensional Caudry-Dodd-Gibbon-Sawada-Kortera systemby entrancing appropriate parameters.
基金Foundation item: Supported by the National Natural Science Foundation of China(10647112, 10871040) Acknowledgement The authors are in debt to thank the helpful discussions with Prof Qin and Dr A P Deng.
文摘A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.
文摘Temperature dependent viscosity and thermal conducting heat and mass transfer flow with chemical reaction and periodic magnetic field past an isothermal oscillating cylinder have been considered. The partial dimensionless equations governing the flow have been solved numerically by applying explicit finite difference method with the help Compaq visual 6.6a. The obtained outcome of this inquisition has been discussed for different values of well-known flow parameters with different time steps and oscillation angle. The effect of chemical reaction and periodic MHD parameters on the velocity field, temperature field and concentration field, skin-friction, Nusselt number and Sherwood number have been studied and results are presented by graphically. The novelty of the present problem is to study the streamlines by taking into account periodic magnetic field.