Receiver ghost reflections adversely affect variable-depth streamer (VDS) data acquisition. In addition, the frequency notches caused by the interference between receiver ghosts and primary waves strongly affect sei...Receiver ghost reflections adversely affect variable-depth streamer (VDS) data acquisition. In addition, the frequency notches caused by the interference between receiver ghosts and primary waves strongly affect seismic data processing and imaging. We developed a high-resolution Radon transform algorithm and used it to predict receiver ghosts from VDS data. The receiver ghost reflections are subtracted and removed from the raw data. We propose a forward Radon transform operator of VDS data in the frequency domain and, based on the ray paths of the receiver ghosts, we propose an inverse Radon transform operator. We apply the proposed methodology to model and field data with good results. We use matching and subtracting modules of commercially available seismic data processing software to remove the receiver ghosts. The frequency notches are compensated and the effective frequency bandwidth of the seismic data broadens.展开更多
Variable-depth streamer seismic data are characterized by low and high frequencies and can be used to obtain high-quality and resolution images of complex subsurface structures. Taking advantage of the frequency range...Variable-depth streamer seismic data are characterized by low and high frequencies and can be used to obtain high-quality and resolution images of complex subsurface structures. Taking advantage of the frequency range in the variable-depth streamer data, we propose the simultaneous inversion of prestack data from variable-offset stack gathers to obtain the P-wave impedance, S-wave impedance, and density. Next, we validate the method by using model and actual variable-depth streamer data from the Huizhou block. The results suggest that the broadband data recorded by variable-depth streamers improve the signal-to-noise ratio and quality of the inversion results and outperform the constant-depth streamer data in delineating the underground stratigraphy.展开更多
Streamers represent an important stage in the initiation of gap discharge. In this work, we used an eight-frame intensified charge-coupled device camera to capture the streamer development process when a lightning imp...Streamers represent an important stage in the initiation of gap discharge. In this work, we used an eight-frame intensified charge-coupled device camera to capture the streamer development process when a lightning impulse voltage of 95%–100% U50% was applied in a 3 m rod–plate gap and the streamer velocity was analyzed. Analysis of the observations shows that streamer velocity can be defined by three stages: rapid velocity decline(stage 1), rapid velocity rise(stage 2)and slow velocity decline(stage 3). The effects of electrode shape, applied voltage and gap breakdown or withstanding on streamer velocity were analyzed. The electrode with a larger radius of curvature will result in a higher initial velocity, and a higher voltage amplitude will cause the streamer to propagate faster at stage 3. Gap withstanding or breakdown has no obvious effect on streamer velocity. In addition, the experimental results are compared with previous results and the statistical characteristics of the primary streamer discharge are discussed.展开更多
Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane ...Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane gap discharge tests were carried out under the gap distance of 5 m at the Qinghai Ultra High Voltage(UHV)test base at an altitude of 2200 m.The experiments measured the physical parameters such as the discharge current,electric field intensity and instantaneous optical power.The duration of the dark period and the critical charge of streamer-toleader transition were obtained at high altitude.Based on radial thermal expansion of the streamer stem,we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude,and calculated the stem temperature,stem radii and the duration of streamer-to-leader transition.Compared with the measured duration of sphere-plane electrode discharge at an altitude of 2200 m,the error rate of the modified model was 0.94%,while the classical model was 6.97%,demonstrating the effectiveness of the modified model.From the comparisons and analysis,several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.展开更多
Streamer discharge is the inaugural stage of gas discharge,and the average electron energy directly determines the electron collision reaction rate,which is a key parameter for studying streamer discharge.Therefore,ta...Streamer discharge is the inaugural stage of gas discharge,and the average electron energy directly determines the electron collision reaction rate,which is a key parameter for studying streamer discharge.Therefore,taking into account the average electron energy,this work establishes a fluid chemical reaction model to simulate and study the course of evolution of a streamer discharge in a 5 mm rod–plate gap,considering 12 particles and 27 chemical reactions.It introduces the electron energy drift diffusion equation into the control equation,and analyzes the temporal and spatial changes of average electron energy,electric field intensity and electron density with change in rod radius and voltage.The effects of voltage and rod radius on the course of streamer discharge can be reflected more comprehensively by combining the average electron energies.Three different values of 0.3 mm,0.4 mm and 0.5 mm are set for the rod radius,and three different values of 5 k V,6 k V and 7 k V are set for the voltage.The influence of an excitation reaction on the streamer discharge is studied.The findings indicate that,as voltage raises,the streamer head’s electron density,electric field and average electron energy all rise,and the streamer develops more quickly.When the rod radius increases,the electron density,electric field and average electron energy of the streamer head all decrease,and the streamer’s evolution slows down.When an excitation reaction is added to the model,the average electron energy,the magnitude of the electric field and the density of electrons decrease,and the evolution of the streamer slows down.An increase in average electron energy will lead to an increase in electric field strength and electron density,and the development of the streamer will be faster.展开更多
The streamer that is driven by the specific pulse DC discharge parameters can stably form a three-dimensional helical plasma channel in a long dielectric tube in the low-temperature plasma experiment,in cases when the...The streamer that is driven by the specific pulse DC discharge parameters can stably form a three-dimensional helical plasma channel in a long dielectric tube in the low-temperature plasma experiment,in cases when there were neither external background magnetic field or other factors that destroyed the poloidal symmetry of the tube.The formation mechanism and chirality of helical streamers are discussed according to the surface electromagnetic standing wave theory.The shape of the helical streamers and the characteristics of helical branches are quantitatively analyzed to further expand the application of plasma and streamer theory in the helix problem and chiral catalytic synthesis.展开更多
文摘Receiver ghost reflections adversely affect variable-depth streamer (VDS) data acquisition. In addition, the frequency notches caused by the interference between receiver ghosts and primary waves strongly affect seismic data processing and imaging. We developed a high-resolution Radon transform algorithm and used it to predict receiver ghosts from VDS data. The receiver ghost reflections are subtracted and removed from the raw data. We propose a forward Radon transform operator of VDS data in the frequency domain and, based on the ray paths of the receiver ghosts, we propose an inverse Radon transform operator. We apply the proposed methodology to model and field data with good results. We use matching and subtracting modules of commercially available seismic data processing software to remove the receiver ghosts. The frequency notches are compensated and the effective frequency bandwidth of the seismic data broadens.
基金sponsored by Comprehensive Research of CNOOC(China) Limited(No.YXKY–2013–SZ–02)
文摘Variable-depth streamer seismic data are characterized by low and high frequencies and can be used to obtain high-quality and resolution images of complex subsurface structures. Taking advantage of the frequency range in the variable-depth streamer data, we propose the simultaneous inversion of prestack data from variable-offset stack gathers to obtain the P-wave impedance, S-wave impedance, and density. Next, we validate the method by using model and actual variable-depth streamer data from the Huizhou block. The results suggest that the broadband data recorded by variable-depth streamers improve the signal-to-noise ratio and quality of the inversion results and outperform the constant-depth streamer data in delineating the underground stratigraphy.
基金supported by the Beijing Science Fund for Distinguished Young Scholars(No.JQ22009)National Natural Science Foundation of China(No.51977198)。
文摘Streamers represent an important stage in the initiation of gap discharge. In this work, we used an eight-frame intensified charge-coupled device camera to capture the streamer development process when a lightning impulse voltage of 95%–100% U50% was applied in a 3 m rod–plate gap and the streamer velocity was analyzed. Analysis of the observations shows that streamer velocity can be defined by three stages: rapid velocity decline(stage 1), rapid velocity rise(stage 2)and slow velocity decline(stage 3). The effects of electrode shape, applied voltage and gap breakdown or withstanding on streamer velocity were analyzed. The electrode with a larger radius of curvature will result in a higher initial velocity, and a higher voltage amplitude will cause the streamer to propagate faster at stage 3. Gap withstanding or breakdown has no obvious effect on streamer velocity. In addition, the experimental results are compared with previous results and the statistical characteristics of the primary streamer discharge are discussed.
基金supported by National Natural Science Foundation of China(Scientific Funds for Young Scientists)(No.52007064)。
文摘Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane gap discharge tests were carried out under the gap distance of 5 m at the Qinghai Ultra High Voltage(UHV)test base at an altitude of 2200 m.The experiments measured the physical parameters such as the discharge current,electric field intensity and instantaneous optical power.The duration of the dark period and the critical charge of streamer-toleader transition were obtained at high altitude.Based on radial thermal expansion of the streamer stem,we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude,and calculated the stem temperature,stem radii and the duration of streamer-to-leader transition.Compared with the measured duration of sphere-plane electrode discharge at an altitude of 2200 m,the error rate of the modified model was 0.94%,while the classical model was 6.97%,demonstrating the effectiveness of the modified model.From the comparisons and analysis,several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.
基金supported in part by China Postdoctoral Science Foundation(No.2022MD723833)Natural Science Basic Research Program of Shaanxi Province(No.2023-JCYB-349)Young Elite Scientists Sponsorship Program by CSEE(No.JLB-2022-91)。
文摘Streamer discharge is the inaugural stage of gas discharge,and the average electron energy directly determines the electron collision reaction rate,which is a key parameter for studying streamer discharge.Therefore,taking into account the average electron energy,this work establishes a fluid chemical reaction model to simulate and study the course of evolution of a streamer discharge in a 5 mm rod–plate gap,considering 12 particles and 27 chemical reactions.It introduces the electron energy drift diffusion equation into the control equation,and analyzes the temporal and spatial changes of average electron energy,electric field intensity and electron density with change in rod radius and voltage.The effects of voltage and rod radius on the course of streamer discharge can be reflected more comprehensively by combining the average electron energies.Three different values of 0.3 mm,0.4 mm and 0.5 mm are set for the rod radius,and three different values of 5 k V,6 k V and 7 k V are set for the voltage.The influence of an excitation reaction on the streamer discharge is studied.The findings indicate that,as voltage raises,the streamer head’s electron density,electric field and average electron energy all rise,and the streamer develops more quickly.When the rod radius increases,the electron density,electric field and average electron energy of the streamer head all decrease,and the streamer’s evolution slows down.When an excitation reaction is added to the model,the average electron energy,the magnitude of the electric field and the density of electrons decrease,and the evolution of the streamer slows down.An increase in average electron energy will lead to an increase in electric field strength and electron density,and the development of the streamer will be faster.
基金This work was supported by National Natural Science Foundation of China(Nos.12005061,12065019)the Natural Science Foundation of Jiangxi Province(No.20202 BABL214036).
文摘The streamer that is driven by the specific pulse DC discharge parameters can stably form a three-dimensional helical plasma channel in a long dielectric tube in the low-temperature plasma experiment,in cases when there were neither external background magnetic field or other factors that destroyed the poloidal symmetry of the tube.The formation mechanism and chirality of helical streamers are discussed according to the surface electromagnetic standing wave theory.The shape of the helical streamers and the characteristics of helical branches are quantitatively analyzed to further expand the application of plasma and streamer theory in the helix problem and chiral catalytic synthesis.