We calculate the average speed of a projectile in the absence of air resistance, a quantity that is missing from the treatment of the problem in the literature. We then show that this quantity is equal to the time-ave...We calculate the average speed of a projectile in the absence of air resistance, a quantity that is missing from the treatment of the problem in the literature. We then show that this quantity is equal to the time-average instantaneous speed of the projectile, but different from its space-average instantaneous speed. It is then shown that this behavior is shared by general motion of all particles regardless of the dimensionality of motion and the nature of the forces involved. The equality of average speed and time-average instantaneous speed can be useful in situations where the calculation of one is more difficult than the other. Thus, making it more efficient to calculate one by calculating the other.展开更多
The influences of three-dimensional corrugated wall on the fully-developed steady no-slip flows in microtube are studied by analytical and numerical methods in this article. Detailed analytical solutions for the space...The influences of three-dimensional corrugated wall on the fully-developed steady no-slip flows in microtube are studied by analytical and numerical methods in this article. Detailed analytical solutions for the space-averaged equations and the numerical method for the solutions of the disturbance equations are given. An iterative arithm of coupled equations with respect to space-averaged velocities and disturbance velocities is suggested. The study shows that a three-dimensional subsidiary stress layer exists in the near-wall region. The relative roughness, wavenumber and Reynolds number are three important parameters influencing the subsidiary stresses and the space-averaged pressure drop. The space-averaged pressure drop subject to an invariable flow rate mainly depends on the position of datum surface. When the datum surface is taken at the balance position of wall function, the value of pressure drop is determined by the dynamic characteristics of the flow.展开更多
文摘We calculate the average speed of a projectile in the absence of air resistance, a quantity that is missing from the treatment of the problem in the literature. We then show that this quantity is equal to the time-average instantaneous speed of the projectile, but different from its space-average instantaneous speed. It is then shown that this behavior is shared by general motion of all particles regardless of the dimensionality of motion and the nature of the forces involved. The equality of average speed and time-average instantaneous speed can be useful in situations where the calculation of one is more difficult than the other. Thus, making it more efficient to calculate one by calculating the other.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10702066)Natural Science Foundation of Zhejiang Province (Grant No. Y7080398)
文摘The influences of three-dimensional corrugated wall on the fully-developed steady no-slip flows in microtube are studied by analytical and numerical methods in this article. Detailed analytical solutions for the space-averaged equations and the numerical method for the solutions of the disturbance equations are given. An iterative arithm of coupled equations with respect to space-averaged velocities and disturbance velocities is suggested. The study shows that a three-dimensional subsidiary stress layer exists in the near-wall region. The relative roughness, wavenumber and Reynolds number are three important parameters influencing the subsidiary stresses and the space-averaged pressure drop. The space-averaged pressure drop subject to an invariable flow rate mainly depends on the position of datum surface. When the datum surface is taken at the balance position of wall function, the value of pressure drop is determined by the dynamic characteristics of the flow.