To adjust the variance of source rate in linear broadcast networks, global encoding kernels should have corresponding dimensions to instruct the decoding process. The algorithm of constructing such global encoding ker...To adjust the variance of source rate in linear broadcast networks, global encoding kernels should have corresponding dimensions to instruct the decoding process. The algorithm of constructing such global encoding kernels is to adjust heterogeneous network to possible link failures. Linear algebra, graph theory and group theory are applied to construct one series of global encoding kernels which are applicable to all source rates. The effectiveness and existence of such global encoding kernels are proved. Based on 2 information flow, the algorithm of construction is explicitly given within polynomial time O(|E| |T|.ω^2max), and the memory complexity of algorithm is O(|E|). Both time and memory complexity of this algorithm proposed can be O(ωmax) less than those of algorithms in related works.展开更多
Perceptual auditory filter banks such as Bark-scale filter bank are widely used as front-end processing in speech recognition systems.However,the problem of the design of optimized filter banks that provide higher acc...Perceptual auditory filter banks such as Bark-scale filter bank are widely used as front-end processing in speech recognition systems.However,the problem of the design of optimized filter banks that provide higher accuracy in recognition tasks is still open.Owing to spectral analysis in feature extraction,an adaptive bands filter bank (ABFB) is presented.The design adopts flexible bandwidths and center frequencies for the frequency responses of the filters and utilizes genetic algorithm (GA) to optimize the design parameters.The optimization process is realized by combining the front-end filter bank with the back-end recognition network in the performance evaluation loop.The deployment of ABFB together with zero-crossing peak amplitude (ZCPA) feature as a front process for radial basis function (RBF) system shows significant improvement in robustness compared with the Bark-scale filter bank.In ABFB,several sub-bands are still more concentrated toward lower frequency but their exact locations are determined by the performance rather than the perceptual criteria.For the ease of optimization,only symmetrical bands are considered here,which still provide satisfactory results.展开更多
Parkinson’s disease (PD) is the most common disease of motor system degeneration that occurs when the dopamine-producing cells are damaged in substantia nigra. To detect PD, various signals have been investigated, in...Parkinson’s disease (PD) is the most common disease of motor system degeneration that occurs when the dopamine-producing cells are damaged in substantia nigra. To detect PD, various signals have been investigated, including EEG, gait and speech. Since approximately 90 percent of the people with PD suffer from speech disorders, speech analysis is considered as the most common technique for this aim. This paper proposes a new algorithm for diagnosing of Parkinson’s disease based on voice analysis. In the first step, genetic algorithm (GA) is undertaken for selecting optimized features from all extracted features. Afterwards a network based on support vector machine (SVM) is used for classification between healthy and people with Parkinson. The dataset of this research is composed of a range of biomedical voice signals from 31 people, 23 with Parkinson’s disease and 8 healthy people. The subjects were asked to pronounce letter “A” for 3 seconds. 22 linear and non-linear features were extracted from the signals that 14 features were based on F0 (fundamental frequency or pitch), jitter, shimmer and noise to harmonics ratio, which are main factors in voice signal. Because changing in these factors is noticeable for the people with PD, optimized features were selected among them. Of the various numbers of optimized features, the data classification was investigated. Results show that the classification accuracy percent of 94.50 per 4 optimized features, the accuracy percent of 93.66 per 7 optimized features and the accuracy percent of 94.22 per 9 optimized features, could be achieved. It can be observed that the best classification accuracy may be achieved using Fhi (Hz), Fho (Hz), jitter (RAP) and shimmer (APQ5).展开更多
Parkinson’s disease(PD),one of whose symptoms is dysphonia,is a prevalent neurodegenerative disease.The use of outdated diagnosis techniques,which yield inaccurate and unreliable results,continues to represent an obs...Parkinson’s disease(PD),one of whose symptoms is dysphonia,is a prevalent neurodegenerative disease.The use of outdated diagnosis techniques,which yield inaccurate and unreliable results,continues to represent an obstacle in early-stage detection and diagnosis for clinical professionals in the medical field.To solve this issue,the study proposes using machine learning and deep learning models to analyze processed speech signals of patients’voice recordings.Datasets of these processed speech signals were obtained and experimented on by random forest and logistic regression classifiers.Results were highly successful,with 90%accuracy produced by the random forest classifier and 81.5%by the logistic regression classifier.Furthermore,a deep neural network was implemented to investigate if such variation in method could add to the findings.It proved to be effective,as the neural network yielded an accuracy of nearly 92%.Such results suggest that it is possible to accurately diagnose early-stage PD through merely testing patients’voices.This research calls for a revolutionary diagnostic approach in decision support systems,and is the first step in a market-wide implementation of healthcare software dedicated to the aid of clinicians in early diagnosis of PD.展开更多
Dynamic time warping (DTW) and dynamic spectral wafliing (DSW)techniques are introduced into learning vector quantization (LVQ) algorithm to con-struct a “dynamic” Bayes classifier for speech recognition. It can pre...Dynamic time warping (DTW) and dynamic spectral wafliing (DSW)techniques are introduced into learning vector quantization (LVQ) algorithm to con-struct a “dynamic” Bayes classifier for speech recognition. It can preduce highly dis-criminiative “dynamic” reference vectors to represent the temporal and spectral vari-abilities of speech. Recognition experiments on 19 Chinese consonants show that the“dynamic” classifier outperforms the original “static” classifier significantly.展开更多
Applied linguistics is one of the fields in the linguistics domain and deals with the practical applications of the language studies such as speech processing,language teaching,translation and speech therapy.The ever-...Applied linguistics is one of the fields in the linguistics domain and deals with the practical applications of the language studies such as speech processing,language teaching,translation and speech therapy.The ever-growing Online Social Networks(OSNs)experience a vital issue to confront,i.e.,hate speech.Amongst the OSN-oriented security problems,the usage of offensive language is the most important threat that is prevalently found across the Internet.Based on the group targeted,the offensive language varies in terms of adult content,hate speech,racism,cyberbullying,abuse,trolling and profanity.Amongst these,hate speech is the most intimidating form of using offensive language in which the targeted groups or individuals are intimidated with the intent of creating harm,social chaos or violence.Machine Learning(ML)techniques have recently been applied to recognize hate speech-related content.The current research article introduces a Grasshopper Optimization with an Attentive Recurrent Network for Offensive Speech Detection(GOARN-OSD)model for social media.The GOARNOSD technique integrates the concepts of DL and metaheuristic algorithms for detecting hate speech.In the presented GOARN-OSD technique,the primary stage involves the data pre-processing and word embedding processes.Then,this study utilizes the Attentive Recurrent Network(ARN)model for hate speech recognition and classification.At last,the Grasshopper Optimization Algorithm(GOA)is exploited as a hyperparameter optimizer to boost the performance of the hate speech recognition process.To depict the promising performance of the proposed GOARN-OSD method,a widespread experimental analysis was conducted.The comparison study outcomes demonstrate the superior performance of the proposed GOARN-OSD model over other state-of-the-art approaches.展开更多
In order to recognize people's annoyance emotions in the working environment and evaluate emotional well- being, emotional speech in a work environment is induced to obtain adequate samples of emotional speech, and a...In order to recognize people's annoyance emotions in the working environment and evaluate emotional well- being, emotional speech in a work environment is induced to obtain adequate samples of emotional speech, and a Mandarin database with two thousands samples is built. In searching for annoyance-type emotion features, the prosodic feature and the voice quality feature parameters of the emotional statements are extracted first. Then an improved back propagation (BP) neural network based on the shuffled frog leaping algorithm (SFLA) is proposed to recognize the emotion. The recognition capability of the BP, radical basis function (RBF) and the SFLA neural networks are compared experimentally. The results show that the recognition ratio of the SFLA neural network is 4. 7% better than that of the BP neural network and 4. 3% better than that of the RBF neural network. The experimental results demonstrate that the random initial data trained by the SFLA can optimize the connection weights and thresholds of the neural network, speed up the convergence and improve the recognition rate.展开更多
To overcome the limitations of conventional speech enhancement methods, such as inaccurate voice activity detector(VAD) and noise estimation, a novel speech enhancement algorithm based on the approximate message passi...To overcome the limitations of conventional speech enhancement methods, such as inaccurate voice activity detector(VAD) and noise estimation, a novel speech enhancement algorithm based on the approximate message passing(AMP) is adopted. AMP exploits the difference between speech and noise sparsity to remove or mute the noise from the corrupted speech. The AMP algorithm is adopted to reconstruct the clean speech efficiently for speech enhancement. More specifically, the prior probability distribution of speech sparsity coefficient is characterized by Gaussian-model, and the hyper-parameters of the prior model are excellently learned by expectation maximization(EM) algorithm. We utilize the k-nearest neighbor(k-NN) algorithm to learn the sparsity with the fact that the speech coefficients between adjacent frames are correlated. In addition, computational simulations are used to validate the proposed algorithm, which achieves better speech enhancement performance than other four baseline methods-Wiener filtering, subspace pursuit(SP), distributed sparsity adaptive matching pursuit(DSAMP), and expectation-maximization Gaussian-model approximate message passing(EM-GAMP) under different compression ratios and a wide range of signal to noise ratios(SNRs).展开更多
In issues like hearing impairment,speech therapy and hearing aids play a major role in reducing the impairment.Removal of noise signals from speech signals is a key task in hearing aids as well as in speech therapy.Du...In issues like hearing impairment,speech therapy and hearing aids play a major role in reducing the impairment.Removal of noise signals from speech signals is a key task in hearing aids as well as in speech therapy.During the transmission of speech signals,several noise components contaminate the actual speech components.This paper addresses a new adaptive speech enhancement(ASE)method based on a modified version of singular spectrum analysis(MSSA).The MSSA generates a reference signal for ASE and makes the ASE is free from feeding reference component.The MSSA adopts three key steps for generating the reference from the contaminated speech only.These are decomposition,grouping and reconstruction.The generated reference is taken as a reference for variable size adaptive learning algorithms.In this work two categories of adaptive learning algorithms are used.They are step variable adaptive learning(SVAL)algorithm and time variable step size adaptive learning(TVAL).Further,sign regressor function is applied to adaptive learning algorithms to reduce the computational complexity of the proposed adaptive learning algorithms.The performance measures of the proposed schemes are calculated in terms of signal to noise ratio improvement(SNRI),excess mean square error(EMSE)and misadjustment(MSD).For cockpit noise these measures are found to be 29.2850,-27.6060 and 0.0758 dB respectively during the experiments using SVAL algorithm.By considering the reduced number of multiplications the sign regressor version of SVAL based ASE method is found to better then the counter parts.展开更多
This research presents,and claries the application of two permutation algorithms,based on chaotic map systems,and applied to a le of speech signals.They are the Arnold cat map-based permutation algorithm,and the Baker...This research presents,and claries the application of two permutation algorithms,based on chaotic map systems,and applied to a le of speech signals.They are the Arnold cat map-based permutation algorithm,and the Baker’s chaotic map-based permutation algorithm.Both algorithms are implemented on the same speech signal sample.Then,both the premier and the encrypted le histograms are documented and plotted.The speech signal amplitude values with time signals of the original le are recorded and plotted against the encrypted and decrypted les.Furthermore,the original le is plotted against the encrypted le,using the spectrogram frequencies of speech signals with the signal duration.These permutation algorithms are used to shufe the positions of the speech les signals’values without any changes,to produce an encrypted speech le.A comparative analysis is introduced by using some of sundry statistical and experimental analyses for the procedures of encryption and decryption,e.g.,the time of both procedures,the encrypted audio signals histogram,the correlation coefcient between specimens in the premier and encrypted signals,a test of the Spectral Distortion(SD),and the Log-Likelihood Ratio(LLR)measures.The outcomes of the different experimental and comparative studies demonstrate that the two permutation algorithms(Baker and Arnold)are sufcient for providing an efcient and reliable voice signal encryption solution.However,the Arnold’s algorithm gives better results in most cases as compared to the results of Baker’s algorithm.展开更多
This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous ...This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous and SMART vehicles.Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle back-ground noise.This article presents the new concept of a hybrid system which is implemented as a virtual instrument.The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle background noise reduction.The study also presents a unique concept of an adaptive system using intelligent clusters of distributed next generation 5G data networks,which allows the exchange of interference information and/or optimal hybrid algorithm settings between individual vehicles.On average,the unfiltered voice commands were successfully recognized in 29.34%of all scenarios,while the LMS reached up to 71.81%,and LMS-ICA hybrid improved the performance further to 73.03%.展开更多
Communication is a significant part of being human and living in the world.Diverse kinds of languages and their variations are there;thus,one person can speak any language and cannot effectively communicate with one w...Communication is a significant part of being human and living in the world.Diverse kinds of languages and their variations are there;thus,one person can speak any language and cannot effectively communicate with one who speaks that language in a different accent.Numerous application fields such as education,mobility,smart systems,security,and health care systems utilize the speech or voice recognition models abundantly.Though,various studies are focused on the Arabic or Asian and English languages by ignoring other significant languages like Marathi that leads to the broader research motivations in regional languages.It is necessary to understand the speech recognition field,in which the major concentrated stages are feature extraction and classification.This paper emphasis developing a Speech Recognition model for the Marathi language by optimizing Recurrent Neural Network(RNN).Here,the preprocessing of the input signal is performed by smoothing and median filtering.After preprocessing the feature extraction is carried out using MFCC and Spectral features to get precise features from the input Marathi Speech corpus.The optimized RNN classifier is used for speech recognition after completing the feature extraction task,where the optimization of hidden neurons in RNN is performed by the Grasshopper Optimization Algorithm(GOA).Finally,the comparison with the conventional techniques has shown that the proposed model outperforms most competing models on a benchmark dataset.展开更多
In this paper the authors look into the problem of Hidden Markov Models (HMM): the evaluation, the decoding and the learning problem. The authors have explored an approach to increase the effectiveness of HMM in th...In this paper the authors look into the problem of Hidden Markov Models (HMM): the evaluation, the decoding and the learning problem. The authors have explored an approach to increase the effectiveness of HMM in the speech recognition field. Although hidden Markov modeling has significantly improved the performance of current speech-recognition systems, the general problem of completely fluent speaker-independent speech recognition is still far from being solved. For example, there is no system which is capable of reliably recognizing unconstrained conversational speech. Also, there does not exist a good way to infer the language structure from a limited corpus of spoken sentences statistically. Therefore, the authors want to provide an overview of the theory of HMM, discuss the role of statistical methods, and point out a range of theoretical and practical issues that deserve attention and are necessary to understand so as to further advance research in the field of speech recognition.展开更多
基金Project(60872005) supported by National Natural Science Foundation of China
文摘To adjust the variance of source rate in linear broadcast networks, global encoding kernels should have corresponding dimensions to instruct the decoding process. The algorithm of constructing such global encoding kernels is to adjust heterogeneous network to possible link failures. Linear algebra, graph theory and group theory are applied to construct one series of global encoding kernels which are applicable to all source rates. The effectiveness and existence of such global encoding kernels are proved. Based on 2 information flow, the algorithm of construction is explicitly given within polynomial time O(|E| |T|.ω^2max), and the memory complexity of algorithm is O(|E|). Both time and memory complexity of this algorithm proposed can be O(ωmax) less than those of algorithms in related works.
基金Project(61072087) supported by the National Natural Science Foundation of ChinaProject(20093048) supported by Shanxi ProvincialGraduate Innovation Fund of China
文摘Perceptual auditory filter banks such as Bark-scale filter bank are widely used as front-end processing in speech recognition systems.However,the problem of the design of optimized filter banks that provide higher accuracy in recognition tasks is still open.Owing to spectral analysis in feature extraction,an adaptive bands filter bank (ABFB) is presented.The design adopts flexible bandwidths and center frequencies for the frequency responses of the filters and utilizes genetic algorithm (GA) to optimize the design parameters.The optimization process is realized by combining the front-end filter bank with the back-end recognition network in the performance evaluation loop.The deployment of ABFB together with zero-crossing peak amplitude (ZCPA) feature as a front process for radial basis function (RBF) system shows significant improvement in robustness compared with the Bark-scale filter bank.In ABFB,several sub-bands are still more concentrated toward lower frequency but their exact locations are determined by the performance rather than the perceptual criteria.For the ease of optimization,only symmetrical bands are considered here,which still provide satisfactory results.
文摘Parkinson’s disease (PD) is the most common disease of motor system degeneration that occurs when the dopamine-producing cells are damaged in substantia nigra. To detect PD, various signals have been investigated, including EEG, gait and speech. Since approximately 90 percent of the people with PD suffer from speech disorders, speech analysis is considered as the most common technique for this aim. This paper proposes a new algorithm for diagnosing of Parkinson’s disease based on voice analysis. In the first step, genetic algorithm (GA) is undertaken for selecting optimized features from all extracted features. Afterwards a network based on support vector machine (SVM) is used for classification between healthy and people with Parkinson. The dataset of this research is composed of a range of biomedical voice signals from 31 people, 23 with Parkinson’s disease and 8 healthy people. The subjects were asked to pronounce letter “A” for 3 seconds. 22 linear and non-linear features were extracted from the signals that 14 features were based on F0 (fundamental frequency or pitch), jitter, shimmer and noise to harmonics ratio, which are main factors in voice signal. Because changing in these factors is noticeable for the people with PD, optimized features were selected among them. Of the various numbers of optimized features, the data classification was investigated. Results show that the classification accuracy percent of 94.50 per 4 optimized features, the accuracy percent of 93.66 per 7 optimized features and the accuracy percent of 94.22 per 9 optimized features, could be achieved. It can be observed that the best classification accuracy may be achieved using Fhi (Hz), Fho (Hz), jitter (RAP) and shimmer (APQ5).
文摘Parkinson’s disease(PD),one of whose symptoms is dysphonia,is a prevalent neurodegenerative disease.The use of outdated diagnosis techniques,which yield inaccurate and unreliable results,continues to represent an obstacle in early-stage detection and diagnosis for clinical professionals in the medical field.To solve this issue,the study proposes using machine learning and deep learning models to analyze processed speech signals of patients’voice recordings.Datasets of these processed speech signals were obtained and experimented on by random forest and logistic regression classifiers.Results were highly successful,with 90%accuracy produced by the random forest classifier and 81.5%by the logistic regression classifier.Furthermore,a deep neural network was implemented to investigate if such variation in method could add to the findings.It proved to be effective,as the neural network yielded an accuracy of nearly 92%.Such results suggest that it is possible to accurately diagnose early-stage PD through merely testing patients’voices.This research calls for a revolutionary diagnostic approach in decision support systems,and is the first step in a market-wide implementation of healthcare software dedicated to the aid of clinicians in early diagnosis of PD.
文摘Dynamic time warping (DTW) and dynamic spectral wafliing (DSW)techniques are introduced into learning vector quantization (LVQ) algorithm to con-struct a “dynamic” Bayes classifier for speech recognition. It can preduce highly dis-criminiative “dynamic” reference vectors to represent the temporal and spectral vari-abilities of speech. Recognition experiments on 19 Chinese consonants show that the“dynamic” classifier outperforms the original “static” classifier significantly.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R281)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia+1 种基金Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4331004DSR031)supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).
文摘Applied linguistics is one of the fields in the linguistics domain and deals with the practical applications of the language studies such as speech processing,language teaching,translation and speech therapy.The ever-growing Online Social Networks(OSNs)experience a vital issue to confront,i.e.,hate speech.Amongst the OSN-oriented security problems,the usage of offensive language is the most important threat that is prevalently found across the Internet.Based on the group targeted,the offensive language varies in terms of adult content,hate speech,racism,cyberbullying,abuse,trolling and profanity.Amongst these,hate speech is the most intimidating form of using offensive language in which the targeted groups or individuals are intimidated with the intent of creating harm,social chaos or violence.Machine Learning(ML)techniques have recently been applied to recognize hate speech-related content.The current research article introduces a Grasshopper Optimization with an Attentive Recurrent Network for Offensive Speech Detection(GOARN-OSD)model for social media.The GOARNOSD technique integrates the concepts of DL and metaheuristic algorithms for detecting hate speech.In the presented GOARN-OSD technique,the primary stage involves the data pre-processing and word embedding processes.Then,this study utilizes the Attentive Recurrent Network(ARN)model for hate speech recognition and classification.At last,the Grasshopper Optimization Algorithm(GOA)is exploited as a hyperparameter optimizer to boost the performance of the hate speech recognition process.To depict the promising performance of the proposed GOARN-OSD method,a widespread experimental analysis was conducted.The comparison study outcomes demonstrate the superior performance of the proposed GOARN-OSD model over other state-of-the-art approaches.
基金The National Natural Science Foundation of China(No.61375028,61301219)China Postdoctoral Science Foundation(No.2012M520973)the Scientific Research Funds of Nanjing Institute of Technology(No.ZKJ201202)
文摘In order to recognize people's annoyance emotions in the working environment and evaluate emotional well- being, emotional speech in a work environment is induced to obtain adequate samples of emotional speech, and a Mandarin database with two thousands samples is built. In searching for annoyance-type emotion features, the prosodic feature and the voice quality feature parameters of the emotional statements are extracted first. Then an improved back propagation (BP) neural network based on the shuffled frog leaping algorithm (SFLA) is proposed to recognize the emotion. The recognition capability of the BP, radical basis function (RBF) and the SFLA neural networks are compared experimentally. The results show that the recognition ratio of the SFLA neural network is 4. 7% better than that of the BP neural network and 4. 3% better than that of the RBF neural network. The experimental results demonstrate that the random initial data trained by the SFLA can optimize the connection weights and thresholds of the neural network, speed up the convergence and improve the recognition rate.
基金supported by National Natural Science Foundation of China(NSFC)(No.61671075)Major Program of National Natural Science Foundation of China(No.61631003)。
文摘To overcome the limitations of conventional speech enhancement methods, such as inaccurate voice activity detector(VAD) and noise estimation, a novel speech enhancement algorithm based on the approximate message passing(AMP) is adopted. AMP exploits the difference between speech and noise sparsity to remove or mute the noise from the corrupted speech. The AMP algorithm is adopted to reconstruct the clean speech efficiently for speech enhancement. More specifically, the prior probability distribution of speech sparsity coefficient is characterized by Gaussian-model, and the hyper-parameters of the prior model are excellently learned by expectation maximization(EM) algorithm. We utilize the k-nearest neighbor(k-NN) algorithm to learn the sparsity with the fact that the speech coefficients between adjacent frames are correlated. In addition, computational simulations are used to validate the proposed algorithm, which achieves better speech enhancement performance than other four baseline methods-Wiener filtering, subspace pursuit(SP), distributed sparsity adaptive matching pursuit(DSAMP), and expectation-maximization Gaussian-model approximate message passing(EM-GAMP) under different compression ratios and a wide range of signal to noise ratios(SNRs).
文摘In issues like hearing impairment,speech therapy and hearing aids play a major role in reducing the impairment.Removal of noise signals from speech signals is a key task in hearing aids as well as in speech therapy.During the transmission of speech signals,several noise components contaminate the actual speech components.This paper addresses a new adaptive speech enhancement(ASE)method based on a modified version of singular spectrum analysis(MSSA).The MSSA generates a reference signal for ASE and makes the ASE is free from feeding reference component.The MSSA adopts three key steps for generating the reference from the contaminated speech only.These are decomposition,grouping and reconstruction.The generated reference is taken as a reference for variable size adaptive learning algorithms.In this work two categories of adaptive learning algorithms are used.They are step variable adaptive learning(SVAL)algorithm and time variable step size adaptive learning(TVAL).Further,sign regressor function is applied to adaptive learning algorithms to reduce the computational complexity of the proposed adaptive learning algorithms.The performance measures of the proposed schemes are calculated in terms of signal to noise ratio improvement(SNRI),excess mean square error(EMSE)and misadjustment(MSD).For cockpit noise these measures are found to be 29.2850,-27.6060 and 0.0758 dB respectively during the experiments using SVAL algorithm.By considering the reduced number of multiplications the sign regressor version of SVAL based ASE method is found to better then the counter parts.
文摘This research presents,and claries the application of two permutation algorithms,based on chaotic map systems,and applied to a le of speech signals.They are the Arnold cat map-based permutation algorithm,and the Baker’s chaotic map-based permutation algorithm.Both algorithms are implemented on the same speech signal sample.Then,both the premier and the encrypted le histograms are documented and plotted.The speech signal amplitude values with time signals of the original le are recorded and plotted against the encrypted and decrypted les.Furthermore,the original le is plotted against the encrypted le,using the spectrogram frequencies of speech signals with the signal duration.These permutation algorithms are used to shufe the positions of the speech les signals’values without any changes,to produce an encrypted speech le.A comparative analysis is introduced by using some of sundry statistical and experimental analyses for the procedures of encryption and decryption,e.g.,the time of both procedures,the encrypted audio signals histogram,the correlation coefcient between specimens in the premier and encrypted signals,a test of the Spectral Distortion(SD),and the Log-Likelihood Ratio(LLR)measures.The outcomes of the different experimental and comparative studies demonstrate that the two permutation algorithms(Baker and Arnold)are sufcient for providing an efcient and reliable voice signal encryption solution.However,the Arnold’s algorithm gives better results in most cases as compared to the results of Baker’s algorithm.
基金This research was funded by the European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project, project number CZ.02.1.01/0.0/0.0/16_019 /0000867by the Ministry of Education of the Czech Republic, Project No. SP2021/32.
文摘This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous and SMART vehicles.Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle back-ground noise.This article presents the new concept of a hybrid system which is implemented as a virtual instrument.The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle background noise reduction.The study also presents a unique concept of an adaptive system using intelligent clusters of distributed next generation 5G data networks,which allows the exchange of interference information and/or optimal hybrid algorithm settings between individual vehicles.On average,the unfiltered voice commands were successfully recognized in 29.34%of all scenarios,while the LMS reached up to 71.81%,and LMS-ICA hybrid improved the performance further to 73.03%.
基金Taif University Researchers Supporting Project number(TURSP-2020/349),Taif University,Taif,Saudi Arabia.
文摘Communication is a significant part of being human and living in the world.Diverse kinds of languages and their variations are there;thus,one person can speak any language and cannot effectively communicate with one who speaks that language in a different accent.Numerous application fields such as education,mobility,smart systems,security,and health care systems utilize the speech or voice recognition models abundantly.Though,various studies are focused on the Arabic or Asian and English languages by ignoring other significant languages like Marathi that leads to the broader research motivations in regional languages.It is necessary to understand the speech recognition field,in which the major concentrated stages are feature extraction and classification.This paper emphasis developing a Speech Recognition model for the Marathi language by optimizing Recurrent Neural Network(RNN).Here,the preprocessing of the input signal is performed by smoothing and median filtering.After preprocessing the feature extraction is carried out using MFCC and Spectral features to get precise features from the input Marathi Speech corpus.The optimized RNN classifier is used for speech recognition after completing the feature extraction task,where the optimization of hidden neurons in RNN is performed by the Grasshopper Optimization Algorithm(GOA).Finally,the comparison with the conventional techniques has shown that the proposed model outperforms most competing models on a benchmark dataset.
文摘In this paper the authors look into the problem of Hidden Markov Models (HMM): the evaluation, the decoding and the learning problem. The authors have explored an approach to increase the effectiveness of HMM in the speech recognition field. Although hidden Markov modeling has significantly improved the performance of current speech-recognition systems, the general problem of completely fluent speaker-independent speech recognition is still far from being solved. For example, there is no system which is capable of reliably recognizing unconstrained conversational speech. Also, there does not exist a good way to infer the language structure from a limited corpus of spoken sentences statistically. Therefore, the authors want to provide an overview of the theory of HMM, discuss the role of statistical methods, and point out a range of theoretical and practical issues that deserve attention and are necessary to understand so as to further advance research in the field of speech recognition.