The relentless pursuit of sustainable and safe energy storage technologies hasdriven a departure from conventional lithium-based batteries toward other relevantalternatives. Among these, aqueous batteries have emerged...The relentless pursuit of sustainable and safe energy storage technologies hasdriven a departure from conventional lithium-based batteries toward other relevantalternatives. Among these, aqueous batteries have emerged as a promisingcandidate due to their inherent properties of being cost-effective, safe,environmentally friendly, and scalable. However, traditional aqueous systemshave faced limitations stemming from water's narrow electrochemical stabilitywindow (-1.23 V), severely constraining their energy density and viability inhigh-demand applications. Recent advancements in decoupling aqueous batteriesoffer a novel solution to overcome this challenge by separating the anolyteand catholyte, thereby expanding the theoretical operational voltage windowto over 3 V. One key component of this innovative system is the ion-selectivemembrane (ISM), acting as a barrier to prevent undesired crossover betweenelectrolytes. This review provides a comprehensive overview of recent advancementsin decoupling aqueous batteries, emphasizing the application of varioustypes of ISMs. Moreover, we summarize different specially designed ISMs andtheir performance attributes. By addressing the current challenges ISMs face,the review outlines potential pathways for future enhancement and developmentof aqueous decoupling batteries.展开更多
Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynami...Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynamic simulation model is first established. In view of close coupling and non-linear relationships between variables, the intelligent auto-adapted PI decoupling control method is used. From the simulation results it is found that, by bringing quadratic performance index in the single neuron, constructing adaptive PI controller, and adjusting gas flow rates through the second pressure relief valve and air compressor coordinately, both anode and cathode pressures can be maintained at ideal levels.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:12304265,92372113,22309059China Postdoctoral Science Foundation,Grant/Award Number:2023MD744237+1 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi,China,Grant/Award Number:20240514the Department of Science and Technology of Liaoning Province,Grant/Award Number:2022-MS-195。
文摘The relentless pursuit of sustainable and safe energy storage technologies hasdriven a departure from conventional lithium-based batteries toward other relevantalternatives. Among these, aqueous batteries have emerged as a promisingcandidate due to their inherent properties of being cost-effective, safe,environmentally friendly, and scalable. However, traditional aqueous systemshave faced limitations stemming from water's narrow electrochemical stabilitywindow (-1.23 V), severely constraining their energy density and viability inhigh-demand applications. Recent advancements in decoupling aqueous batteriesoffer a novel solution to overcome this challenge by separating the anolyteand catholyte, thereby expanding the theoretical operational voltage windowto over 3 V. One key component of this innovative system is the ion-selectivemembrane (ISM), acting as a barrier to prevent undesired crossover betweenelectrolytes. This review provides a comprehensive overview of recent advancementsin decoupling aqueous batteries, emphasizing the application of varioustypes of ISMs. Moreover, we summarize different specially designed ISMs andtheir performance attributes. By addressing the current challenges ISMs face,the review outlines potential pathways for future enhancement and developmentof aqueous decoupling batteries.
基金Project supported by National High-Technology Research andDevelopment Program of China (Grant No .2002AA517020)
文摘Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynamic simulation model is first established. In view of close coupling and non-linear relationships between variables, the intelligent auto-adapted PI decoupling control method is used. From the simulation results it is found that, by bringing quadratic performance index in the single neuron, constructing adaptive PI controller, and adjusting gas flow rates through the second pressure relief valve and air compressor coordinately, both anode and cathode pressures can be maintained at ideal levels.