A new hybrid method of frequency domain and time domain is developed in this paper to predict the motion responses of a flexibly joint multi-body floating system to irregular waves. The main idea of the method is that...A new hybrid method of frequency domain and time domain is developed in this paper to predict the motion responses of a flexibly joint multi-body floating system to irregular waves. The main idea of the method is that the three-dimensional frequency method is used to obtain the hydrodynamic coefficients and the response equations are solved in time domain step by step. All the forces can be obtained at the same time. The motions and nonlinear mooring forces of a box type six-body floating system are predicted. A comparison of the theoretical method-based Solutions with experimental results has shown good agreement.展开更多
Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical...Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical structure and neglect feedback action of joint controller. In order to study the effects of joint controller on the modal analysis of rotational flexible manipulator, a closed-loop analytical modal analysis method is proposed. Firstly, two exact boundary constraints, namely servo feedback constraint and bending moment constraint, are derived to solve the vibration partial differential equation. It is found that the stiffness and damping gains of joint controller are both included in the boundary conditions, which lead to an unconventional secular term. Secondly, analytical algorithm based on Ritz approach is developed by using Laplace transform and complex modal approach to obtain the natural frequencies and mode shapes. And then, the numerical simulations are performed and the computational results show that joint controller has pronounced influence on the modal parameters: joint controller stiffness reduces the natural frequency, while joint controller damping makes the shape phase non-zero. Furthermore, the validity of the presented conclusion is confirmed through experimental studies. These findings are expected to improve the performance of dynamics simulation systems and model-based controllers.展开更多
Flexible joints are usually used to transfer velocities in robot systems and may lead to delays in motion transformation due to joint flexibility. In this paper, a linkrotor structure connected by a flexible joint or ...Flexible joints are usually used to transfer velocities in robot systems and may lead to delays in motion transformation due to joint flexibility. In this paper, a linkrotor structure connected by a flexible joint or shaft is firstly modeled to be a slow-fast delayed system when moment of inertia of the lightweight link is far less than that of the heavy rotor. To analyze the stability and oscillations of the slowfast system, the geometric singular perturbation method is extended, with both slow and fast manifolds expressed analytically. The stability of the slow manifold is investigated and critical boundaries are obtained to divide the stable and the unstable regions. To study effects of the transformation delay on the stability and oscillations of the link, two quantitatively different driving forces derived from the negative feedback of the link are considered. The results show that one of these two typical driving forces may drive the link to exhibit a stable state and the other kind of driving force may induce a relaxation oscillation for a very small delay. However, the link loses stability and undergoes regular periodic and bursting oscillation when the transformation delay is large. Basically, a very small delay does not affect the stability of the slow manifold but a large delay affects substantially.展开更多
A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Compar...A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.展开更多
The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints,which models the contact between the truss member and joint by spring-damper with...The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints,which models the contact between the truss member and joint by spring-damper with six directional stiffnesses and dampings.Firstly,a two-node hybrid joint-beam element was derived for modeling the truss member with flexible end joints,and a condensed model for the repeating element with flexible joints was obtained.Then,the energy equivalence method was adopted to equivalently model the truss structure with flexible joints and material damping as a spatial viscoelastic anisotropic beam model.Afterwards,the equations of motion for the equivalent beam model were derived and solved analytically in the frequency domain.In the numerical studies,the correctness of the presented method was verified by comparisons of the natural frequencies and frequency responses evaluated by the equivalent beam model with the results of the finite element method model.展开更多
An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both v...An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both vibration suppression mode,where FJR tracks the desired position with little vibration,and compliance mode,in which FJR presents passive.Instead of designing multiple controllers and switching between them,both modes are integrated into a single controller,and the transition between two modes is smooth and stable.The stability of the closed-loop system is theoretically proven via the Lyapunov method,with the considering the dynamics uncertainties in both link side and motor side.Simulation results are presented to illustrate good performances of the proposed control scheme.展开更多
Several typical flexible pneumatic actuators (FPA) and different mechanical models describing their behaviors have been proposed, however, it is difficult to balance compliance and load capacity in conventional desi...Several typical flexible pneumatic actuators (FPA) and different mechanical models describing their behaviors have been proposed, however, it is difficult to balance compliance and load capacity in conventional designs, and these models still have limitations in predicting behavior of FPAs. A new flexible pneumatic bending joint (FPBJ) with special anisotropic rigidity structure is proposed. The FPBJ is developed as an improvement with regard to existing types of FPA, and its principal characteristic is derived from the special anisotropic rigidity structure. With this structure, the load capacity in the direction perpendicular to bending plane is strengthened. The structure of the new FPBJ is explained and a mathematical model is derived based on Euler-Bernoulli beam model and Hook’s law. To obtain optimum design and usage, some key structure parameters and input-output characteristics are simulated. The simulation results reveal that the relationship between the structure parameters and FPBJ’s bending angle is nonlinear. At last, according to the simulation results, the FPBJ is manufactured with optional parameters and tested. The experimental results show that the joint’s statics characteristics are reflected by the mathematical model accurately when the FPBJ is deflated. The maximum relative error between simulation and experimental results is less than 6%. However, the model still has limitations. When the joint is inflated, the maximum relative error reaches 20%. This paper proposes a new flexible pneumatic bending joint which has sufficient load capacity and compliance, and the mathematical model provides theoretical guidance for the FPBJ’s structure design.展开更多
In this investigation, a modeling procedure of a telescopic boom of cranes is developed using the absolute nodal coordinate formulation together with the sliding joint constraints. Since telescopic booms are extracted...In this investigation, a modeling procedure of a telescopic boom of cranes is developed using the absolute nodal coordinate formulation together with the sliding joint constraints. Since telescopic booms are extracted and retracted under various operating conditions, the overall length of the boom changes dynamically, leading to the time-variant vibration characteristics. For modeling the telescopic structure of booms, a special care needs to be exercised since the location of the sliding contact point moves Mong the deformable axis of the flexible boom and the solution to a moving boundary problem is required. This issue indeed makes the modeling of the telescopic boom difficult, despite the significant needs for the analysis. It is, therefore, the objective of this investigation to develop a modeling procedure for the flexible telescopic boom by considering the sliding contact condition with the dynamic frictional effect. To this end, the sliding joint constraint developed for the absolute nodal coordinate formulation is employed for describing relative sliding motion between flexible booms, while flexible booms are modeled using the beam element of the absolute nodal coordinate formulation, which allows for modeling the large rotation and deformation of the structure.展开更多
A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal m...A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance.展开更多
A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper.With this control scheme,the performance against disturbances,uncertainties,and attenuation is...A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper.With this control scheme,the performance against disturbances,uncertainties,and attenuation is enhanced.Linear active disturbance rejection control(LADRC)is mainly based on an extended state observer(ESO)technology.A fractional integral(FOI)action is combined with the LADRC technique which proposes a hybrid control scheme like FO-LADRC.Incorporating this FOI action improves the robustness of the standard LADRC.The set-point tracking of the proposed FO-LADRC scheme is designed by Bode’s ideal transfer function(BITF)based robust closed-loop concept,an appropriate pole placement method.The effectiveness of the proposed FO-LADRC scheme is illustrated through experimental results on the linear flexible joint system(LFJS).The results show the enhancement of the robustness with disturbance rejection.Furthermore,a comparative analysis is presented with the results obtained using the integer-order LADRC and FO-LADRC scheme.展开更多
Analytical models used to describe behaviour of steel frame loadbearing structures in fully developed fire usually do not allow for reduced joint stiffness due to increased member temperature. Joints previously design...Analytical models used to describe behaviour of steel frame loadbearing structures in fully developed fire usually do not allow for reduced joint stiffness due to increased member temperature. Joints previously designed as nominally rigid tend to become flexible in fire situation, with degree of flexibility increasing during fire development. Reliable analysis of this phenomenon and its influence on the redistribution of internal forces result in the need for developing appropriate characteristics, describing relationship between bending moment applied to the joint and joint rotation. Characteristics of such type, specified for fire conditions, depend on steel temperature, in the current work, the authors propose a practical approach to develop such characteristics, based on the knowledge of analogous characteristic prepared for persistent design situation. The developed technique does not require to generalize the classical component method to the case of fire, which may be difficult in practical situations. The proposed computational algorithm has been tested on an example of a typical beam-to-column joint.展开更多
This paper develops a novel interval type-2 fuzzy Proportional-Derivative (PD) control scheme for electrically driven flexible-joint robots using the direct method of Lyapunov. The controller has a simple design in a ...This paper develops a novel interval type-2 fuzzy Proportional-Derivative (PD) control scheme for electrically driven flexible-joint robots using the direct method of Lyapunov. The controller has a simple design in a decentralized structure. Compared to the previous controllers reported for the flexible-joint robots which use two control loops, it has a simpler structure using only one control loop. It guarantees stability and provides a good tracking performance. The controller considers the whole robotic system including the manipulator and motors by applying the voltage control strategy. Stability analysis is presented and the effectiveness of the proposed control approach is demonstrated by simulations using a three link flexible-joint robot driven by permanent magnet DC motors. Simulation results show that the interval type-2 fuzzy PD controller can handle external disturbance better than the type-1 fuzzy PD controller. In addition, it spends less control effort than the type-1 in order to deal with disturbance.展开更多
The dynamic model of two-flexible-arm mechanism with elastic joints is studied.The transmission problem of the joint which connects two flexible links is successfully solved. The mechanical model is proposed for the j...The dynamic model of two-flexible-arm mechanism with elastic joints is studied.The transmission problem of the joint which connects two flexible links is successfully solved. The mechanical model is proposed for the joint, and a practical vibration analysis method of lumped parameter transfer matrix modal analysis is developed for two flexible arms with an elastic joint.展开更多
During dislocation,a tunnel crossing the active fault will be damaged to varying degrees due to its permanent stratum displacement.Most previous studies did not consider the influence of the tunnel’s deep burial and ...During dislocation,a tunnel crossing the active fault will be damaged to varying degrees due to its permanent stratum displacement.Most previous studies did not consider the influence of the tunnel’s deep burial and the high in-situ stress,so the results were not entirely practical.In this paper,the necessity of solving the anti-dislocation problem of deep-buried tunnels is systemically discussed.Through the model test of tunnels across active faults,the differences in failures between deep-buried tunnels and shallow-buried tunnels were compared,and the dislocation test of deep-buried segmental tunnels was carried out to analyze the external stress change,lining strain,and failure mode of tunnels.The results are as follows.(1)The overall deformation of deep-buried and shallow-buried tunnels is both Sshaped.The failure mode of deep-buried tunnels is primarily characterized by shear and tensile failure,resulting in significant compressive deformation and a larger damaged area.In contrast,shallow-buried tunnels mainly experience shear failure,with the tunnel being sheared apart at the fault crossing,leading to more severe damage.(2)After the segmental structure design of the deep-buried tunnel,the‘‘S”deformation pattern is transformed into a‘‘ladder”pattern,and the strain of the tunnel and the peak stress of the external rock mass are reduced;therefore,damages are significantly mitigated.(3)Through the analysis of the distribution of cracks in the tunnel lining,it is found that the tunnel without a segmental structure design has suffered from penetrating failure and that cracks affect the entire lining.The cracks in a flexible segmental tunnel affect about 66.6%of the entire length of the tunnel,and cracks in a tunnel with a short segmental tunnel only affect about 33.3%of the entire length of the tunnel.Therefore,a deep-buried tunnel with a short segmental tunnel can yield a better anti-dislocation effect.(4)By comparing the shallow-buried segmental tunnel in previous studies,it is concluded that the shallow-buried segmental tunnel will also suffer from deformation outside the fault zone,while the damages to the deep-buried segmental tunnel are concentrated in the fault zone,so the anti-dislocation protection measures of the deep-buried tunnel shall be provided mainly in the fault zone.The results of the above study can provide theoretical reference and technical support for the design and reinforcement measures of the tunnel crossing active fault under high in-situ stress conditions.展开更多
A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It h...A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It has many characteristics of low-cost,lightweight,simple structure and good flexibility. Its operating principle was introduced. Then three basic locomotion modes,which are linear motion,curvilinear motion and crossing the orthogonal planes,were presented. The safety conditions of WALKMAN-I were discussed and built. Finally,the control system was designed and experiments were carried out. Experimental results show that WALKMAN-I is able to climb on the vertical wall surface along a straight line or a curved path,and has the ability of crossing orthogonal planes and obstacles. The maximum rotation angle reaches 90°,the maximum velocity reaches 5 mm/s,and the rotation angle and the moving velocity of WALKMAN-I can be easily controlled.展开更多
The lack of research on flexible drilling tool leads to limited application of ultra-short radius horizontal wells.The flexible drilling tool is different from the conventional drilling tool.The flexible drilling pipe...The lack of research on flexible drilling tool leads to limited application of ultra-short radius horizontal wells.The flexible drilling tool is different from the conventional drilling tool.The flexible drilling pipe involves a mutual transition between the structure and the mechanism during the deformation process.At the same time,the flexible drilling pipe and the eccentric guide tube,the guide tube and the wellbore generate random contact.In this paper,3-D beam elements,universal joint elements,rigid beam elements and the beam-beam contact elements are combined to establish a two-layer contact nonlinear finite element model of the flexible drilling tool in the wellbore.The dynamic relaxation method is introduced for numerical solution.The feasibility of the model and the algorithm is verified by an example.The mechanical analysis of flexible drilling tool under the four hole inclinations in the oblique section is carried out.It is found that the flexible drilling pipe has a“folded line”deformation.The contact force between the flexible drilling pipe and the guide tube is randomly distributed.The contact force between the guide tube and the wellbore in the oblique section is greater than that in the vertical section.As the hole inclinations increase,the torque and axial force transmitted to the drill bit gradually decrease.展开更多
The dynamics for multi-link spatial flexible manipulator arms is investigated. The system considered here is an N-flexible-link manipulator driven by N DC-motors through N revolute flexiblejoints. The flexibility of e...The dynamics for multi-link spatial flexible manipulator arms is investigated. The system considered here is an N-flexible-link manipulator driven by N DC-motors through N revolute flexiblejoints. The flexibility of each flexible joint is modeled as a linearly elastic torsional spring, and the mass of the joint is also considered. For the flexibility of the link, all of the stretching deformation, bending deformation and the torsional deformation are included. The complete governing equations of motion of the system are derived via the Lagrange equations. The nonlinear description of the deformation field of the flexible link is adopted in the dynamic modeling, and thus the dynamic stiffening effects are captured. Based on this model, a general-purpose software package for dynamic simulation of multi-link spatial flexible manipulator arms is developed. Several illustrative examples are given to validate the algorithm presented in this paper and to indicate that not only dynamic stiffening effects but also the flexibility of the structure has significant influence on the dynamic performance of the manipulator.展开更多
基金This project was supported by the National Natural Science Foundation of China (Grant No. 50039010)
文摘A new hybrid method of frequency domain and time domain is developed in this paper to predict the motion responses of a flexibly joint multi-body floating system to irregular waves. The main idea of the method is that the three-dimensional frequency method is used to obtain the hydrodynamic coefficients and the response equations are solved in time domain step by step. All the forces can be obtained at the same time. The motions and nonlinear mooring forces of a box type six-body floating system are predicted. A comparison of the theoretical method-based Solutions with experimental results has shown good agreement.
基金Supported by National Natural Science Foundation of China(Grant No.51305039)Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110005120004)+1 种基金Fundamental Research Funds for the Central Universities,China(Grant No.2014PTB-00-01)National Basic Research Program of China(973 Program,Grant No.2013CB733000)
文摘Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical structure and neglect feedback action of joint controller. In order to study the effects of joint controller on the modal analysis of rotational flexible manipulator, a closed-loop analytical modal analysis method is proposed. Firstly, two exact boundary constraints, namely servo feedback constraint and bending moment constraint, are derived to solve the vibration partial differential equation. It is found that the stiffness and damping gains of joint controller are both included in the boundary conditions, which lead to an unconventional secular term. Secondly, analytical algorithm based on Ritz approach is developed by using Laplace transform and complex modal approach to obtain the natural frequencies and mode shapes. And then, the numerical simulations are performed and the computational results show that joint controller has pronounced influence on the modal parameters: joint controller stiffness reduces the natural frequency, while joint controller damping makes the shape phase non-zero. Furthermore, the validity of the presented conclusion is confirmed through experimental studies. These findings are expected to improve the performance of dynamics simulation systems and model-based controllers.
基金supported by the National Natural Science Foundation of China(11032009 and 11272236)
文摘Flexible joints are usually used to transfer velocities in robot systems and may lead to delays in motion transformation due to joint flexibility. In this paper, a linkrotor structure connected by a flexible joint or shaft is firstly modeled to be a slow-fast delayed system when moment of inertia of the lightweight link is far less than that of the heavy rotor. To analyze the stability and oscillations of the slowfast system, the geometric singular perturbation method is extended, with both slow and fast manifolds expressed analytically. The stability of the slow manifold is investigated and critical boundaries are obtained to divide the stable and the unstable regions. To study effects of the transformation delay on the stability and oscillations of the link, two quantitatively different driving forces derived from the negative feedback of the link are considered. The results show that one of these two typical driving forces may drive the link to exhibit a stable state and the other kind of driving force may induce a relaxation oscillation for a very small delay. However, the link loses stability and undergoes regular periodic and bursting oscillation when the transformation delay is large. Basically, a very small delay does not affect the stability of the slow manifold but a large delay affects substantially.
基金Project(2006AA04Z228) supported by the National High-Tech Research and Development Program of ChinaProject(PCSIRT) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.
基金This work was supported by the National Natural Science Foundation of China(Grants 11702146,11732006 and 11827801)the Equipment Pre-research Foundation(Grant 6140210010202).
文摘The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints,which models the contact between the truss member and joint by spring-damper with six directional stiffnesses and dampings.Firstly,a two-node hybrid joint-beam element was derived for modeling the truss member with flexible end joints,and a condensed model for the repeating element with flexible joints was obtained.Then,the energy equivalence method was adopted to equivalently model the truss structure with flexible joints and material damping as a spatial viscoelastic anisotropic beam model.Afterwards,the equations of motion for the equivalent beam model were derived and solved analytically in the frequency domain.In the numerical studies,the correctness of the presented method was verified by comparisons of the natural frequencies and frequency responses evaluated by the equivalent beam model with the results of the finite element method model.
基金supported by the National Key R&D Program of China(No.2017YFB1300400)the National Natural Science Foundation of China(No. 51805107)
文摘An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both vibration suppression mode,where FJR tracks the desired position with little vibration,and compliance mode,in which FJR presents passive.Instead of designing multiple controllers and switching between them,both modes are integrated into a single controller,and the transition between two modes is smooth and stable.The stability of the closed-loop system is theoretically proven via the Lyapunov method,with the considering the dynamics uncertainties in both link side and motor side.Simulation results are presented to illustrate good performances of the proposed control scheme.
基金Supported by National Natural Science Foundation of China (Grant No.51075363)Zhejiang Provincial Natural Science Outstanding Youth Team Foundation of China (Grant No.R1090674)+1 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No.LY12E05022)Open Fund of Key Laboratory of E&M (Zhejiang University of Technology),Ministry of Education & Zhejiang Province of China (Grant No.2009EP026)
文摘Several typical flexible pneumatic actuators (FPA) and different mechanical models describing their behaviors have been proposed, however, it is difficult to balance compliance and load capacity in conventional designs, and these models still have limitations in predicting behavior of FPAs. A new flexible pneumatic bending joint (FPBJ) with special anisotropic rigidity structure is proposed. The FPBJ is developed as an improvement with regard to existing types of FPA, and its principal characteristic is derived from the special anisotropic rigidity structure. With this structure, the load capacity in the direction perpendicular to bending plane is strengthened. The structure of the new FPBJ is explained and a mathematical model is derived based on Euler-Bernoulli beam model and Hook’s law. To obtain optimum design and usage, some key structure parameters and input-output characteristics are simulated. The simulation results reveal that the relationship between the structure parameters and FPBJ’s bending angle is nonlinear. At last, according to the simulation results, the FPBJ is manufactured with optional parameters and tested. The experimental results show that the joint’s statics characteristics are reflected by the mathematical model accurately when the FPBJ is deflated. The maximum relative error between simulation and experimental results is less than 6%. However, the model still has limitations. When the joint is inflated, the maximum relative error reaches 20%. This paper proposes a new flexible pneumatic bending joint which has sufficient load capacity and compliance, and the mathematical model provides theoretical guidance for the FPBJ’s structure design.
基金supported by Kato Construction Machine Research & Development Promotion Fund
文摘In this investigation, a modeling procedure of a telescopic boom of cranes is developed using the absolute nodal coordinate formulation together with the sliding joint constraints. Since telescopic booms are extracted and retracted under various operating conditions, the overall length of the boom changes dynamically, leading to the time-variant vibration characteristics. For modeling the telescopic structure of booms, a special care needs to be exercised since the location of the sliding contact point moves Mong the deformable axis of the flexible boom and the solution to a moving boundary problem is required. This issue indeed makes the modeling of the telescopic boom difficult, despite the significant needs for the analysis. It is, therefore, the objective of this investigation to develop a modeling procedure for the flexible telescopic boom by considering the sliding contact condition with the dynamic frictional effect. To this end, the sliding joint constraint developed for the absolute nodal coordinate formulation is employed for describing relative sliding motion between flexible booms, while flexible booms are modeled using the beam element of the absolute nodal coordinate formulation, which allows for modeling the large rotation and deformation of the structure.
基金National Natural Science Foundation of China(No.61273339)
文摘A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance.
基金This research work was funded by Institutional Fund Projects under Grant No.(IFPRC-027-135-2020).
文摘A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper.With this control scheme,the performance against disturbances,uncertainties,and attenuation is enhanced.Linear active disturbance rejection control(LADRC)is mainly based on an extended state observer(ESO)technology.A fractional integral(FOI)action is combined with the LADRC technique which proposes a hybrid control scheme like FO-LADRC.Incorporating this FOI action improves the robustness of the standard LADRC.The set-point tracking of the proposed FO-LADRC scheme is designed by Bode’s ideal transfer function(BITF)based robust closed-loop concept,an appropriate pole placement method.The effectiveness of the proposed FO-LADRC scheme is illustrated through experimental results on the linear flexible joint system(LFJS).The results show the enhancement of the robustness with disturbance rejection.Furthermore,a comparative analysis is presented with the results obtained using the integer-order LADRC and FO-LADRC scheme.
文摘Analytical models used to describe behaviour of steel frame loadbearing structures in fully developed fire usually do not allow for reduced joint stiffness due to increased member temperature. Joints previously designed as nominally rigid tend to become flexible in fire situation, with degree of flexibility increasing during fire development. Reliable analysis of this phenomenon and its influence on the redistribution of internal forces result in the need for developing appropriate characteristics, describing relationship between bending moment applied to the joint and joint rotation. Characteristics of such type, specified for fire conditions, depend on steel temperature, in the current work, the authors propose a practical approach to develop such characteristics, based on the knowledge of analogous characteristic prepared for persistent design situation. The developed technique does not require to generalize the classical component method to the case of fire, which may be difficult in practical situations. The proposed computational algorithm has been tested on an example of a typical beam-to-column joint.
文摘This paper develops a novel interval type-2 fuzzy Proportional-Derivative (PD) control scheme for electrically driven flexible-joint robots using the direct method of Lyapunov. The controller has a simple design in a decentralized structure. Compared to the previous controllers reported for the flexible-joint robots which use two control loops, it has a simpler structure using only one control loop. It guarantees stability and provides a good tracking performance. The controller considers the whole robotic system including the manipulator and motors by applying the voltage control strategy. Stability analysis is presented and the effectiveness of the proposed control approach is demonstrated by simulations using a three link flexible-joint robot driven by permanent magnet DC motors. Simulation results show that the interval type-2 fuzzy PD controller can handle external disturbance better than the type-1 fuzzy PD controller. In addition, it spends less control effort than the type-1 in order to deal with disturbance.
文摘The dynamic model of two-flexible-arm mechanism with elastic joints is studied.The transmission problem of the joint which connects two flexible links is successfully solved. The mechanical model is proposed for the joint, and a practical vibration analysis method of lumped parameter transfer matrix modal analysis is developed for two flexible arms with an elastic joint.
基金supported by the National Key R&D Programs for Young Scientists of China(Grant No.2023YFB2390400)the National Natural Science Foundation of China(Grant Nos.U21A20159,52079133,52379112,and 41902288)+2 种基金Key Research Program of First Survey and Design Institute(Grant No.2022KY56(ZDZX)-02)Key Research Program of the Ministry of Water Resources of China(Grant No.SKS-2022103)Yunnan Major Science and Technology Special Program(Grant No.202102AF080001).
文摘During dislocation,a tunnel crossing the active fault will be damaged to varying degrees due to its permanent stratum displacement.Most previous studies did not consider the influence of the tunnel’s deep burial and the high in-situ stress,so the results were not entirely practical.In this paper,the necessity of solving the anti-dislocation problem of deep-buried tunnels is systemically discussed.Through the model test of tunnels across active faults,the differences in failures between deep-buried tunnels and shallow-buried tunnels were compared,and the dislocation test of deep-buried segmental tunnels was carried out to analyze the external stress change,lining strain,and failure mode of tunnels.The results are as follows.(1)The overall deformation of deep-buried and shallow-buried tunnels is both Sshaped.The failure mode of deep-buried tunnels is primarily characterized by shear and tensile failure,resulting in significant compressive deformation and a larger damaged area.In contrast,shallow-buried tunnels mainly experience shear failure,with the tunnel being sheared apart at the fault crossing,leading to more severe damage.(2)After the segmental structure design of the deep-buried tunnel,the‘‘S”deformation pattern is transformed into a‘‘ladder”pattern,and the strain of the tunnel and the peak stress of the external rock mass are reduced;therefore,damages are significantly mitigated.(3)Through the analysis of the distribution of cracks in the tunnel lining,it is found that the tunnel without a segmental structure design has suffered from penetrating failure and that cracks affect the entire lining.The cracks in a flexible segmental tunnel affect about 66.6%of the entire length of the tunnel,and cracks in a tunnel with a short segmental tunnel only affect about 33.3%of the entire length of the tunnel.Therefore,a deep-buried tunnel with a short segmental tunnel can yield a better anti-dislocation effect.(4)By comparing the shallow-buried segmental tunnel in previous studies,it is concluded that the shallow-buried segmental tunnel will also suffer from deformation outside the fault zone,while the damages to the deep-buried segmental tunnel are concentrated in the fault zone,so the anti-dislocation protection measures of the deep-buried tunnel shall be provided mainly in the fault zone.The results of the above study can provide theoretical reference and technical support for the design and reinforcement measures of the tunnel crossing active fault under high in-situ stress conditions.
基金Project (50575206) supported by the National Natural Science Foundation of ChinaProject (BX102716) supported by Xinmiao Program of Zhejiang Province, China
文摘A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It has many characteristics of low-cost,lightweight,simple structure and good flexibility. Its operating principle was introduced. Then three basic locomotion modes,which are linear motion,curvilinear motion and crossing the orthogonal planes,were presented. The safety conditions of WALKMAN-I were discussed and built. Finally,the control system was designed and experiments were carried out. Experimental results show that WALKMAN-I is able to climb on the vertical wall surface along a straight line or a curved path,and has the ability of crossing orthogonal planes and obstacles. The maximum rotation angle reaches 90°,the maximum velocity reaches 5 mm/s,and the rotation angle and the moving velocity of WALKMAN-I can be easily controlled.
基金support from the Natural Science Foundation of China(Grant numbers:51674088)supported by National Natural Science Foundation of China(Grant No.51674088).
文摘The lack of research on flexible drilling tool leads to limited application of ultra-short radius horizontal wells.The flexible drilling tool is different from the conventional drilling tool.The flexible drilling pipe involves a mutual transition between the structure and the mechanism during the deformation process.At the same time,the flexible drilling pipe and the eccentric guide tube,the guide tube and the wellbore generate random contact.In this paper,3-D beam elements,universal joint elements,rigid beam elements and the beam-beam contact elements are combined to establish a two-layer contact nonlinear finite element model of the flexible drilling tool in the wellbore.The dynamic relaxation method is introduced for numerical solution.The feasibility of the model and the algorithm is verified by an example.The mechanical analysis of flexible drilling tool under the four hole inclinations in the oblique section is carried out.It is found that the flexible drilling pipe has a“folded line”deformation.The contact force between the flexible drilling pipe and the guide tube is randomly distributed.The contact force between the guide tube and the wellbore in the oblique section is greater than that in the vertical section.As the hole inclinations increase,the torque and axial force transmitted to the drill bit gradually decrease.
基金supported by the National Natural Science Foundations of China (10772085,11272155 and 11132007)333 Project of Jiangsu Province,China(BRA2011172)NUST Research Funding,China(2011YBXM32)
文摘The dynamics for multi-link spatial flexible manipulator arms is investigated. The system considered here is an N-flexible-link manipulator driven by N DC-motors through N revolute flexiblejoints. The flexibility of each flexible joint is modeled as a linearly elastic torsional spring, and the mass of the joint is also considered. For the flexibility of the link, all of the stretching deformation, bending deformation and the torsional deformation are included. The complete governing equations of motion of the system are derived via the Lagrange equations. The nonlinear description of the deformation field of the flexible link is adopted in the dynamic modeling, and thus the dynamic stiffening effects are captured. Based on this model, a general-purpose software package for dynamic simulation of multi-link spatial flexible manipulator arms is developed. Several illustrative examples are given to validate the algorithm presented in this paper and to indicate that not only dynamic stiffening effects but also the flexibility of the structure has significant influence on the dynamic performance of the manipulator.