反事实预测和选择偏差是因果效应估计中的重大挑战。为对潜在协变量的复杂混杂分布进行有效表征,同时增强反事实预测泛化能力,提出一种面向工业因果效应估计应用的重加权对抗变分自编码器网络(RVAENet)模型。针对混杂分布去偏问题,借鉴...反事实预测和选择偏差是因果效应估计中的重大挑战。为对潜在协变量的复杂混杂分布进行有效表征,同时增强反事实预测泛化能力,提出一种面向工业因果效应估计应用的重加权对抗变分自编码器网络(RVAENet)模型。针对混杂分布去偏问题,借鉴域适应思想,采用对抗学习机制对由变分自编码器(VAE)获得的隐含变量进行表示学习的分布平衡;在此基础上,通过学习样本倾向性权重对样本进行重加权,进一步缩小实验组(Treatment)与对照组(Control)样本间的分布差异。实验结果表明,在工业真实场景数据集的两个场景下,所提模型的提升曲线下的面积(AUUC)比TEDVAE(Treatment Effect with Disentangled VAE)分别提升了15.02%、16.02%;在公开数据集上,所提模型的平均干预效果(ATE)和异构估计精度(PEHE)普遍取得最优结果。展开更多
多视图聚类(Multi-View Clustering,MVC)旨在利用不同视图间的一致性和互补性来高效处理多视图数据,是大数据分析中重要的研究方向之一.然而,现有方法无法有效学习到多视图信息间的潜在联系,且缺乏考虑视图重要性差异问题.针对上述这些...多视图聚类(Multi-View Clustering,MVC)旨在利用不同视图间的一致性和互补性来高效处理多视图数据,是大数据分析中重要的研究方向之一.然而,现有方法无法有效学习到多视图信息间的潜在联系,且缺乏考虑视图重要性差异问题.针对上述这些问题,本文提出了一种基于分布对齐变分自编码器的深度多视图聚类方法(Deep Multi-View Clustering based on Distribution Aligned Variational Autoencoder,DMVCDA).首先,针对特定视图我们利用多个变分自编码器从不同视图中提取潜在特征,并对特征的分布进行对齐,以挖掘包含基本信息的潜在特征;然后,引入视图权重参数,获取共享的潜在特征;最后,在潜在特征上建立面向聚类的损失目标,使得学习到的潜在特征更适合聚类任务,从而提高聚类精度.在五个公共多视图数据集上的实验结果表明,我们的模型在精确度(ACC)、标准互信息(NMI)和纯度(Purity)等多个聚类评价指标上均表现出优异的性能.展开更多
高光谱图像异常检测作为一种无监督的目标检测,主要存在异常目标类型多样化、异常与背景不易区分、以及检测精度受场景影响大等难题。针对以上问题,本文提出了一种基于空谱多路自编码器的高光谱图像异常检测方法。首先,提出一种加权空谱...高光谱图像异常检测作为一种无监督的目标检测,主要存在异常目标类型多样化、异常与背景不易区分、以及检测精度受场景影响大等难题。针对以上问题,本文提出了一种基于空谱多路自编码器的高光谱图像异常检测方法。首先,提出一种加权空谱Gabor滤波方法,提取高光谱图像的多尺度空谱特征;其次,采用多路自编码器降低多尺度空谱特征在光谱维的冗余度,提取空谱特征中的主要信息;最后,利用得到的主要空谱特征,结合形态学滤波与双曲正切函数进行特征增强,以提高异常与背景噪声的区分度。本文提出的方法是一种即插即用的异常检测方法,无需额外的参数输入;多路自编码器提取了多尺度主要空谱特征,以应对异常目标类型多样化的难题;通过特征增强提高了背景与异常的区分度。将本文提出的方法与9种流行的异常检测方法相比,在5个高光谱数据集上进行验证,通过对比异常检测结果图、接收机操作特性(Receiver Operating Characteristic,ROC)曲线、ROC曲线下覆盖的面积AUC(Area Under Curve)以及异常像元与背景像元的箱型图等评价指标,证明了本文方法优于其他9种方法。展开更多
文摘反事实预测和选择偏差是因果效应估计中的重大挑战。为对潜在协变量的复杂混杂分布进行有效表征,同时增强反事实预测泛化能力,提出一种面向工业因果效应估计应用的重加权对抗变分自编码器网络(RVAENet)模型。针对混杂分布去偏问题,借鉴域适应思想,采用对抗学习机制对由变分自编码器(VAE)获得的隐含变量进行表示学习的分布平衡;在此基础上,通过学习样本倾向性权重对样本进行重加权,进一步缩小实验组(Treatment)与对照组(Control)样本间的分布差异。实验结果表明,在工业真实场景数据集的两个场景下,所提模型的提升曲线下的面积(AUUC)比TEDVAE(Treatment Effect with Disentangled VAE)分别提升了15.02%、16.02%;在公开数据集上,所提模型的平均干预效果(ATE)和异构估计精度(PEHE)普遍取得最优结果。
文摘多视图聚类(Multi-View Clustering,MVC)旨在利用不同视图间的一致性和互补性来高效处理多视图数据,是大数据分析中重要的研究方向之一.然而,现有方法无法有效学习到多视图信息间的潜在联系,且缺乏考虑视图重要性差异问题.针对上述这些问题,本文提出了一种基于分布对齐变分自编码器的深度多视图聚类方法(Deep Multi-View Clustering based on Distribution Aligned Variational Autoencoder,DMVCDA).首先,针对特定视图我们利用多个变分自编码器从不同视图中提取潜在特征,并对特征的分布进行对齐,以挖掘包含基本信息的潜在特征;然后,引入视图权重参数,获取共享的潜在特征;最后,在潜在特征上建立面向聚类的损失目标,使得学习到的潜在特征更适合聚类任务,从而提高聚类精度.在五个公共多视图数据集上的实验结果表明,我们的模型在精确度(ACC)、标准互信息(NMI)和纯度(Purity)等多个聚类评价指标上均表现出优异的性能.
文摘高光谱图像异常检测作为一种无监督的目标检测,主要存在异常目标类型多样化、异常与背景不易区分、以及检测精度受场景影响大等难题。针对以上问题,本文提出了一种基于空谱多路自编码器的高光谱图像异常检测方法。首先,提出一种加权空谱Gabor滤波方法,提取高光谱图像的多尺度空谱特征;其次,采用多路自编码器降低多尺度空谱特征在光谱维的冗余度,提取空谱特征中的主要信息;最后,利用得到的主要空谱特征,结合形态学滤波与双曲正切函数进行特征增强,以提高异常与背景噪声的区分度。本文提出的方法是一种即插即用的异常检测方法,无需额外的参数输入;多路自编码器提取了多尺度主要空谱特征,以应对异常目标类型多样化的难题;通过特征增强提高了背景与异常的区分度。将本文提出的方法与9种流行的异常检测方法相比,在5个高光谱数据集上进行验证,通过对比异常检测结果图、接收机操作特性(Receiver Operating Characteristic,ROC)曲线、ROC曲线下覆盖的面积AUC(Area Under Curve)以及异常像元与背景像元的箱型图等评价指标,证明了本文方法优于其他9种方法。