In this study, an artificial neural network (ANN) model for studying the strength properties of steel fiber reinforced concrete (SFRC) containing fly ash was devised. The mixtures were prepared with 0 wt%, 15 wt%, and...In this study, an artificial neural network (ANN) model for studying the strength properties of steel fiber reinforced concrete (SFRC) containing fly ash was devised. The mixtures were prepared with 0 wt%, 15 wt%, and 30 wt% of fly ash, at 0 vol.%, 0.5 vol.%, 1.0 vol.% and 1.5 vol.% of fiber, respectively. After being cured under the standard conditions for 7, 28, 90 and 365 d, the specimens of each mixture were tested to determine the corresponding compressive and flexural strengths. The pa- rameters such as the amounts of cement, fly ash replacement, sand, gravel, steel fiber, and the age of samples were selected as input variables, while the compressive and flexural strengths of the concrete were chosen as the output variables. The back propagation learning algorithm with three different variants, namely the Levenberg-Marquardt (LM), scaled conjugate gradient (SCG) and Fletcher-Powell conjugate gradient (CGF) algorithms were used in the network so that the best approach can be found. The results obtained from the model and the experiments were compared, and it was found that the suitable algorithm is the LM algorithm. Furthermore, the analysis of variance (ANOVA) method was used to determine how importantly the experimental parameters affect the strength of these mixtures.展开更多
To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four importa...To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.展开更多
We introduce the so-called naive tests and give a brief review of the new developments. Naive testing methods are easy to understand and perform robustly, especially when the dimension is large. We focus mainly on rev...We introduce the so-called naive tests and give a brief review of the new developments. Naive testing methods are easy to understand and perform robustly, especially when the dimension is large. We focus mainly on reviewing some naive testing methods for the mean vectors and covariance matrices of high-dimensional populations, and we believe that this naive testing approach can be used widely in many other testing problems.展开更多
For linear discrete time-invariant stochastic system with correlated noises,and with unknown state transition matrix and unknown noise statistics,substituting the online consistent estimators of the state transition m...For linear discrete time-invariant stochastic system with correlated noises,and with unknown state transition matrix and unknown noise statistics,substituting the online consistent estimators of the state transition matrix and noise statistics into steady-state optimal Riccati equation,a new self-tuning Riccati equation is presented.A dynamic variance error system analysis(DVESA)method is presented,which transforms the convergence problem of self-tuning Riccati equation into the stability problem of a time-varying Lyapunov equation.Two decision criterions of the stability for the Lyapunov equation are presented.Using the DVESA method and Kalman filtering stability theory,it proves that with probability 1,the solution of self-tuning Riccati equation converges to the solution of the steady-state optimal Riccati equation or time-varying optimal Riccati equation.The proposed method can be applied to design a new selftuning information fusion Kalman filter and will provide the theoretical basis for solving the convergence problem of self-tuning filters.A numerical simulation example shows the effectiveness of the proposed method.展开更多
文摘In this study, an artificial neural network (ANN) model for studying the strength properties of steel fiber reinforced concrete (SFRC) containing fly ash was devised. The mixtures were prepared with 0 wt%, 15 wt%, and 30 wt% of fly ash, at 0 vol.%, 0.5 vol.%, 1.0 vol.% and 1.5 vol.% of fiber, respectively. After being cured under the standard conditions for 7, 28, 90 and 365 d, the specimens of each mixture were tested to determine the corresponding compressive and flexural strengths. The pa- rameters such as the amounts of cement, fly ash replacement, sand, gravel, steel fiber, and the age of samples were selected as input variables, while the compressive and flexural strengths of the concrete were chosen as the output variables. The back propagation learning algorithm with three different variants, namely the Levenberg-Marquardt (LM), scaled conjugate gradient (SCG) and Fletcher-Powell conjugate gradient (CGF) algorithms were used in the network so that the best approach can be found. The results obtained from the model and the experiments were compared, and it was found that the suitable algorithm is the LM algorithm. Furthermore, the analysis of variance (ANOVA) method was used to determine how importantly the experimental parameters affect the strength of these mixtures.
基金Project(2009ZX04014-074)supported by the National High Technology Research and Development Program of ChinaProject(20120006110017)supported by Doctoral Fund Program of Ministry of Education of ChinaProject(P2014-15)supported by State Key Laboratory of Materials Processing and Die & Mould Technology(Huazhong University of Science and Technology),China
文摘To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.
基金supported by National Natural Science Foundation of China (Grant Nos. 11301063 and 11571067)Science and Technology Development Foundation of Jilin (Grant No. 20160520174JH)Science and Technology Foundation of Jilin during the "13th Five-Year Plan"
文摘We introduce the so-called naive tests and give a brief review of the new developments. Naive testing methods are easy to understand and perform robustly, especially when the dimension is large. We focus mainly on reviewing some naive testing methods for the mean vectors and covariance matrices of high-dimensional populations, and we believe that this naive testing approach can be used widely in many other testing problems.
基金supported by the National Natural Science Foundation of China (Grant No.60874063).
文摘For linear discrete time-invariant stochastic system with correlated noises,and with unknown state transition matrix and unknown noise statistics,substituting the online consistent estimators of the state transition matrix and noise statistics into steady-state optimal Riccati equation,a new self-tuning Riccati equation is presented.A dynamic variance error system analysis(DVESA)method is presented,which transforms the convergence problem of self-tuning Riccati equation into the stability problem of a time-varying Lyapunov equation.Two decision criterions of the stability for the Lyapunov equation are presented.Using the DVESA method and Kalman filtering stability theory,it proves that with probability 1,the solution of self-tuning Riccati equation converges to the solution of the steady-state optimal Riccati equation or time-varying optimal Riccati equation.The proposed method can be applied to design a new selftuning information fusion Kalman filter and will provide the theoretical basis for solving the convergence problem of self-tuning filters.A numerical simulation example shows the effectiveness of the proposed method.